

Parabolic Applications in Suspension Bridge Design: Mathematical Modeling, Structural Analysis, and Computational Verification

¹Aaditya Pandey, ²D.N. Mandal, ^{3*}Suresh Kumar Sahani

¹ Department of Mathematics, Mithila Institute of Technology, Nepal

^{2,3*}Faculty of Science, Technology, and Engineering

Rajarshi Janak University, Nepal

Corresponding Author: sureshsahani@rju.edu.np

Article Received: 01 Aug 2025, Revised: 08 Sept 2025, Accepted: 15 Sept 2025

ABSTRACT

Suspension bridges are the classic example of application of geometry in civil and structural engineering. This paper examines the mathematical foundation of the parabolic shape formed by the main cables when they carry a uniform load. By using mathematical derivation and computational modelling in python this paper shows how ideal equations of parabola can be used in real life application.

Keywords: Parabola, suspension bridge, main cable geometry, mathematical modelling, structural analysis, parabolic cable equation, bridge sag and span, uniform and non-uniform loading, temperature effects, tower compression, Python-based computation, and real-life engineering application.

Introduction:

Parabolas aren't just something you see in math class—they're actually a big deal for builders, too. When engineers design suspension bridges, take a look at those big cables holding everything up. They always follow a parabolic curve. There's a reason for that. If you want to spread out a heavy load, like the weight of an entire bridge, a parabola is the best shape for the cables. Builders know parabolas can handle a lot of weight and help keep the bridge strong and safe. So, when engineers are figuring out how to make bridges that last and don't collapse, they rely on these curves. The main cables on a suspension bridge show exactly how parabolas work in real life, not just on a chalkboard. It's kind of wild—this shape we learn about in algebra actually helps bridges stretch over huge distances without using tons of extra material. In this paper, we'll show how the parabola study in math class turns out to be essential for building some of the world's most impressive bridges.

Literature Review: The Story of the Parabola in Bridges

Early Ideas: From Drawings to Discovery

Ages ago, Greek mathematicians like Apollonius sketched and named the parabola. For centuries, it just sat in geometry books, an odd but interesting curve. Then, in the 1600s, Galileo noticed something wild—when you toss a ball, it traces out a perfect parabola in the air. Suddenly, this wasn't just a shape for math nerds; it was a clue to how the real world actually works.

The Hanging Chain and a Brilliant Flip

Not long after, people like Robert Hooke started paying attention to how a heavy chain hangs between two posts—it forms a curve called a catenary. Here's the clever part: Hooke realized if you turned that curve upside down, you'd get the ideal shape for building a stone arch that can carry huge weight. That simple insight changed the game. Suddenly, a random curve from nature became the blueprint for strong, beautiful structures. Later, engineers figured out that if you hang a cable under a flat, evenly loaded bridge deck, the cable forms a true parabola. That became the golden rule for suspension bridges.

Building the Giants: Putting Math to Work

By the 1800s, engineers started dreaming bigger, building massive suspension bridges—think the Brooklyn Bridge. Builders like John Roebling might not have been math geniuses, but they knew the parabola was their friend. They used its equations to decide how thick the cables needed to be and how much weight the bridge could handle. Textbooks from that era spelled out the formulas: the relationship between the bridge's length, the cable's sag, and the force on it. The parabola wasn't just a classroom curiosity anymore—it was essential gear for anyone building a bridge.

Today: Computers and Perfecting the Curve

Fast forward to the last century. Engineering tools made a huge leap. Scientists wrote detailed books explaining exactly why the parabola works so well for loaded cables—and where it falls short. Real bridges have to deal with more than just weight—traffic jams, wild winds, all sorts of chaos. That's where computers stepped in. With powerful software, engineers can start with the classic parabolic shape and then stress-test it against every imaginable challenge, like running a digital wind tunnel. Modern bridge designers still trust the parabola as their starting point, but computers help them tweak the design so the bridge stays safe and strong, even when real life gets messy.

Where We Are Now

So, next time you see a massive, graceful bridge, remember—you're looking at the end result of this long journey. From an ancient Greek drawing to centuries of trial and error to today's supercomputer tweaks, the parabola has quietly become the unsung hero of modern engineering. It's a perfect example of how a beautiful piece of math can end up changing the way we connect our world.

Contributions of Scientists and Researchers:

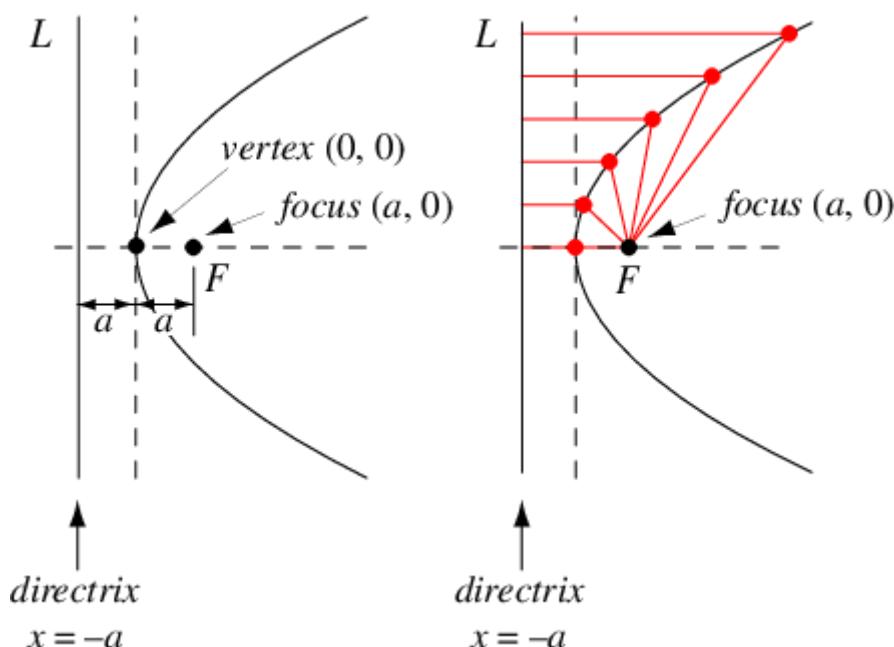
Apollonius of Perga (c. 200 BCE) was among the earliest mathematicians to conduct a systematic study of the parabola. Through his work on conic sections, he formally defined the parabola and established its fundamental geometric properties. His contributions provided the essential mathematical language and framework that later scientists and engineers relied upon to analyse parabolic curves in physical and structural systems. In the 17th century, Galileo Galilei demonstrated that the trajectory of a projectile under uniform gravitational acceleration follows a parabolic path. This discovery was significant because it showed that parabolic curves are not merely abstract geometric objects but also govern real physical motion. Galileo's work established a direct connection between geometry and mechanics, influencing later applications of parabolic theory in engineering and structural design. Subsequently, Robert Hooke investigated the shape formed by a *freely hanging chain* and identified it as a *catenary* rather than a parabola. His famous statement, “*As hangs the flexible line, so but inverted will stand the*

rigid arch,” highlighted the structural relationship between hanging cables and arches. This insight played a crucial role in understanding *load transfer and stability* in arches and *suspension structures*. Further mathematical clarification was provided in the *late 17th century* by *Johann Bernoulli, Gottfried Wilhelm Leibniz, and Leonhard Euler*, who derived the *exact equation of the catenary curve*. Their work clearly distinguished the *catenary from the parabola*, while also demonstrating that when a cable carries a *uniformly distributed horizontal load*, its shape closely *approximates a parabola*. This result justified the widespread engineering use of *parabolic models in suspension bridge design*. During the *19th century*, engineers such as *John A. Roebling*, the designer of the *Brooklyn Bridge*, applied these mathematical principles to *large-scale bridge construction*. Roebling utilized the relationships between *span length, cable sag, and tension* to design suspension bridges that were both *structurally stable and material-efficient*. As a result, the parabola transitioned from a *theoretical concept* to a *practical engineering tool*. In modern times, researchers such as *Lazer and McKenna (1987)* extended suspension bridge analysis by studying *nonlinear behaviour and dynamic oscillations* under *realistic loading conditions*. *Gazzola (2010)* further developed *comprehensive mathematical models* that incorporate *cable self-weight, variable loading, and environmental effects* such as *wind and temperature*. More recent applied studies by *Tajčová (1999)* and *Kwofie et al. (2012)* validated these theoretical models using *real bridge data*. Their findings confirmed that although *actual suspension bridge cables* do not form *perfect parabolas*, the *parabolic model* remains an *effective and reliable first approximation* for *engineering analysis and preliminary design*.

The analysis of suspension bridges has historically depended on mathematical modeling to represent their intricate structural responses to static and dynamic loads. The mathematical formulations, both classical and current, articulated by *Gazzola (2010)*, *Tajčová (1999)*, and *Ahmed (1998)*, provide a robust analytical framework for modeling suspension bridges using nonlinear differential equations, variational principles, and stability analysis. *Lazer and McKenna's (1990)* seminal research elucidated the importance of nonlinear effects by showcasing substantial periodic oscillations in suspension bridges, offering essential understanding of phenomena like resonance and torsional instability. Theoretical advancements are supported by practical research, such as *Kwofie et al.'s (2012)* case study of the *Adomi Bridge* and *Konstantakopoulos et al.'s (2010)* model of a combined cable system under dynamic loads, which substantiate mathematical theories through empirical engineering applications. Analytic geometry serves as an essential mathematical foundation for several models, especially via the use of conic sections and curve representations. The cables of a suspension bridge, subjected to uniform load, closely resemble parabolic profiles, rendering coordinate geometry essential for examining cable configuration, tension distribution, and structural efficacy. *Sahani and coworkers have made significant contributions* highlighting the relevance of analytic geometry and conic sections in practical applications. Their research illustrates that geometric constructions, including parabolas, ellipses, and hyperbolas, are not only theoretical notions but vital instruments in mechanical engineering, architecture, and industrial design (*Sahani et al., 2019; Sahani & Prasad, 2023; Mishra & Sahani, 2024; Das et al., 2024*). These studies demonstrate how coordinate geometry facilitates accurate mathematical representations of physical systems, resulting in enhanced design precision and performance optimization. In addition to structural engineering, numerical approaches based on coordinate geometry—such as interpolation, curve fitting, and approximation techniques—are essential for simulating real-world events. *Sahani (2021)* emphasizes the efficacy of numerical interpolation and curve fitting in anticipating business demand, underscoring the adaptability of analytic geometry-based numerical methods. Recent research amalgamate neural networks and machine learning with numerical and geometric techniques to address nonlinear differential equations and regulate nonlinear systems (*Sahani et al., 2023; Sahani, 2024*), signifying a notable progression in data-driven mathematical modeling. Moreover, practical case studies integrate fundamental mathematical and geometric principles with industrial and manufacturing sectors. *Sahani et al. (2025)* examine the mechanical and operational dynamics of steel manufacturing facilities, illustrating how mathematical modeling, geometric interpretation, and process analysis enhance system performance. These publications together emphasize the progressive function of coordinate geometry as a cohesive framework linking classical mathematics, numerical analysis, machine learning, and practical engineering applications. The examined literature affirms that coordinate geometry is a fundamental component of applied mathematics. Its use of nonlinear analysis, numerical methods, and contemporary computational tools guarantees its ongoing significance in tackling intricate real-world challenges in structural engineering, manufacturing, architecture, and data-driven systems.

Objectives:

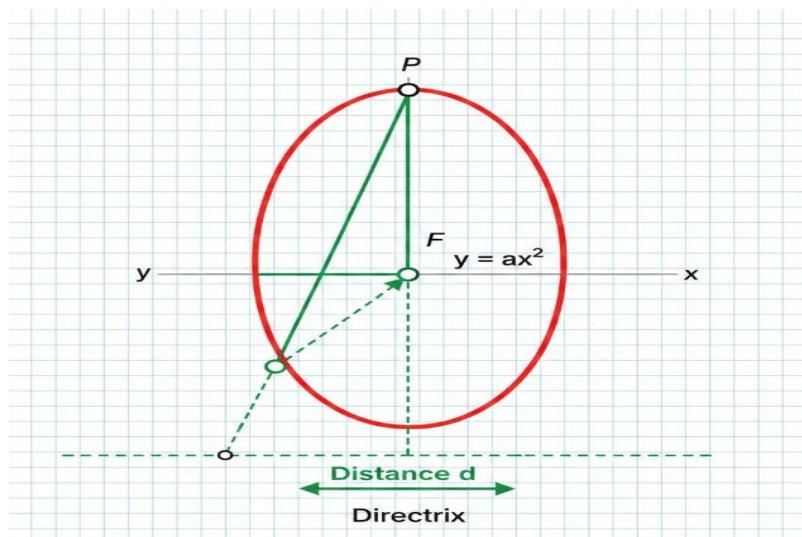
Here's what we are aiming for with this paper: I want to show you why the curve of a parabola is basically made for suspension bridges—it's strong, efficient, and just makes sense. First, let's figure out the equation for the curve a bridge cable forms when it's holding up a heavy road. Once we have that, We'll get into the forces involved: the tension running through the cables, the pressure on the towers, all that good stuff. You'll see why this shape just fits. I'll also put together a quick Python program to plot the parabolic cable and do some number crunching—things like how much the cable sags and the maximum tension it handles. Once we've got those numbers, we'll check out some actual bridges and compare their shapes to our ideal parabola. Sometimes, the real bridges don't match the math exactly, and I'll talk about why that happens. To finish up, I'll highlight the real-world perks of using a parabolic shape in bridge design—saving on materials, making the bridge safer, and spreading the load more evenly.

Discussion:

A parabola is a special U-shaped curve. You can think of it as a collection of every point that is exactly the same distance from:

1. A fixed point called the focus (like a dot on the paper), and
2. A fixed straight line called the directrix (a line that does not go through the focus).

If the vertex (the bottom or top of the "U") is a certain distance a from the focus, then the whole width of the curve near the focus is described by $p = 2a$, where p is called the focal parameter. If we spin a parabola around its centre line, the shape we get is called a paraboloid — like a satellite dish or the reflector in a car's headlight.



Let's build a bridge step-by-step with only easy math — no hard formulas.

Step 1: Choose the Bridge Size

Let's make a small bridge first so numbers are easy.

Bridge span: 40 meters from tower to tower.

That means from the middle, each tower is 20 meters away.

We want the cable to dip 4 meters in the middle.

So:

- Middle point: $x = 0$, cable height $y = 0$
- At tower: $x = 20$, cable height $y = 4$

Step 2: Find the Parabola Equation

Parabola formula:

$$y = a \times x^2$$

At the tower: $x = 20$, $y = 4$

$$\begin{aligned} 4 &= a \times (20 \times 20) \\ 4 &= a \times 400 \\ a &= 4 \div 400 = 0.01 \end{aligned}$$

So our ideal bridge cable equation is:

$$y = 0.01 \times x^2$$

Step 3: Make a Height Table for Workers

For x = distance from middle (meters):

x	x^2	$y = 0.01 \times x^2$
0	0	0.00 m
2	4	0.04 m
4	16	0.16 m
6	36	0.36 m
8	64	0.64 m
10	100	1.00 m
12	144	1.44 m
14	196	1.96 m
16	256	2.56 m
18	324	3.24 m
20	400	4.00 m

Workers use this table to hang the cable at the right height every 2 meters.

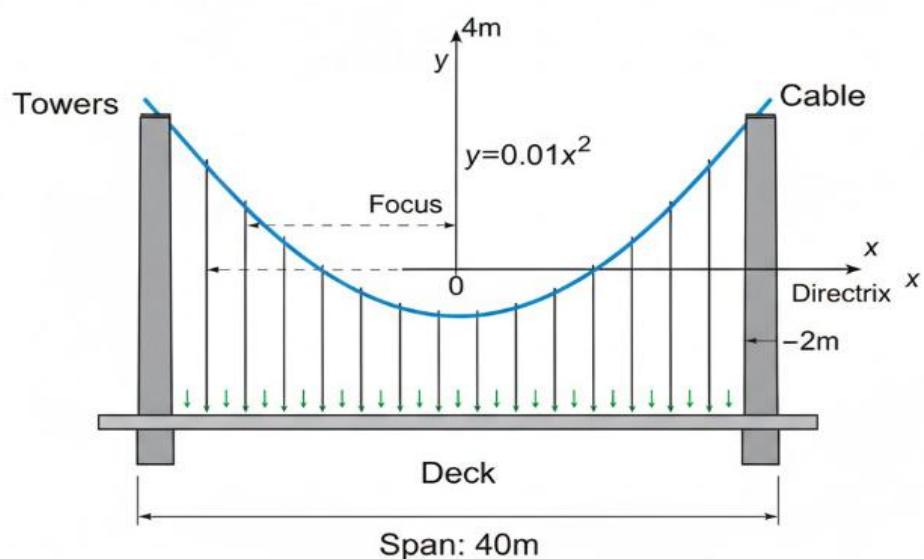


FIG: Deal Parabolic Cable in 40m Suspension Bridge Model

Step 4: Cable Length – Simple Method without Formula

The cable is curved, so it's longer than 40 m. Let's find length using small straight pieces.

From $x = 0$ to $x = 20$, let's go step by step every 2 meters:

Step A: Between $x = 0$ and $x = 2$:

- Height at $x = 0 \rightarrow y = 0$
- Height at $x = 2 \rightarrow y = 0.04$
- Horizontal distance = 2, vertical difference = 0.04
- Piece length = $\sqrt{2^2 + 0.04^2}$

$$= \sqrt{4 + 0.0016} = \sqrt{4.0016} \approx 2.0004$$

Step B: Between $x = 2$ and $x = 4$:

- Height at $x = 2 \rightarrow 0.04$
- Height at $x = 4 \rightarrow 0.16$
- Vertical difference = 0.12
- Length = $\sqrt{2^2 + 0.12^2} = \sqrt{4 + 0.0144} = \sqrt{4.0144} \approx 2.0036$

If we do this for all 10 steps (0 to 20 m), we can add them.

Step 5: Add Cable's Own Weight

Cables are heavy! If cable weight adds 25% more sag:

Old sag = 4 m

Add 25%:

$$4 \times 0.25 = 1 \text{ m extra sag}$$

New sag = $4 + 1 = 5 \text{ m}$.

New a :

$$5 = a \times 400$$
$$a = 5 \div 400 = 0.0125$$

New equation: $y = 0.0125 \times x^2$

Check at $x = 10$:

Old height = $0.01 \times 100 = 1 \text{ m}$

New height = $0.0125 \times 100 = 1.25 \text{ m}$ (higher above middle? Wait—if sag increased to 5 m, then at same x, y should be bigger because curve is steeper.)

Step 6: Traffic in Middle

If middle 10 meters has more cars, say extra 20% weight in middle section.

Average extra = $\frac{10}{40} \times 20\% = 5\%$ more total weight.

So sag increases by 5% from 5 m:

$$5 \times 0.05 = 0.25 \text{ m extra}$$

New sag = $5 + 0.25 = 5.25 \text{ m.}$

New α :

$$5.25 = \alpha \times 400$$
$$\alpha = 5.25 \div 400 = 0.013125$$

Step 7: Temperature Change

Hot day → cable gets 0.1% longer.

Cable length was $\sim 40.27 \text{ m.}$

Extra length = $40.27 \times 0.001 \approx 0.040 \text{ m longer.}$

More length = more sag. Roughly sag increases 2%:

New sag = $5.25 \times 1.02 = 5.355 \text{ m.}$

New α :

$$5.355 = \alpha \times 400$$
$$\alpha = 5.355 \div 400 = 0.0133875$$

Step 8: Safety Factor

Add 30% extra for safety:

$$5.355 \times 1.30 = 6.9615 \text{ m (about 7 m)}$$

So final sag = 7 m.

Final α :

$$7 = \alpha \times 400$$
$$\alpha = 7 \div 400 = 0.0175$$

Final Bridge Cable Equation:

$$y = 0.0175 \times x^2$$

Step 9: Build It!

Tower height from lowest cable point = 7 m.

Construction table (every 4 m from centre):

x from center	x^2	Cable height y
0	0	0.00 m
4	16	0.28 m
8	64	1.12 m

x from center	x^2	Cable height y
12	144	2.52 m
16	256	4.48 m
20	400	7.00 m

Workers:

1. Build towers 7 m tall at $x = 20$ and $x = -20$
2. Hang main cable so it passes through heights in table
3. Attach vertical ropes (hangers) from cable to road
4. Road hangs at constant height below cable

Step 10: Find Cable Length Using Only the Parabola and Simple Addition

We have the final equation:

$$y = 0.0175 \times x^2$$

We know:

Bridge half-span = 20 m from middle to tower.

We'll find cable length from $x = 0$ to $x = 20$ by approximating with small straight segments (every 2 meters), then add them up.

Segment Lengths (Using Pythagoras, only $a^2 + b^2$)

We'll calculate for each 2 m step horizontally:

1. $x = 0$ to $x = 2$

- At $x = 0$, $y = 0.0175 \times 0 = 0$ m
- At $x = 2$, $y = 0.0175 \times 4 = 0.07$ m
- Horizontal distance = 2 m
- Vertical difference = $0.07 - 0 = 0.07$ m
- Segment length = $\sqrt{2^2 + 0.07^2} = \sqrt{4 + 0.0049} = \sqrt{4.0049} \approx 2.001225$ m

2. $x = 2$ to $x = 4$

- At $x = 2$, $y = 0.07$ m
- At $x = 4$, $y = 0.0175 \times 16 = 0.28$ m
- Vertical difference = $0.28 - 0.07 = 0.21$ m
- Segment length = $\sqrt{2^2 + 0.21^2} = \sqrt{4 + 0.0441} = \sqrt{4.0441} \approx 2.010994$ m

3. $x = 4$ to $x = 6$

- At $x = 4, y = 0.28$ m
- At $x = 6, y = 0.0175 \times 36 = 0.63$ m
- Vertical difference = $0.63 - 0.28 = 0.35$ m
- Segment length = $\sqrt{4 + 0.1225} = \sqrt{4.1225} \approx 2.030531$ m

4. $x = 6$ to $x = 8$

- At $x = 6, y = 0.63$ m
- At $x = 8, y = 0.0175 \times 64 = 1.12$ m
- Vertical difference = $1.12 - 0.63 = 0.49$ m
- Segment length = $\sqrt{4 + 0.2401} = \sqrt{4.2401} \approx 2.059151$ m

5. $x = 8$ to $x = 10$

- At $x = 8, y = 1.12$ m
- At $x = 10, y = 0.0175 \times 100 = 1.75$ m
- Vertical difference = $1.75 - 1.12 = 0.63$ m
- Segment length = $\sqrt{4 + 0.3969} = \sqrt{4.3969} \approx 2.096879$ m

6. $x = 10$ to $x = 12$

- At $x = 10, y = 1.75$ m
- At $x = 12, y = 0.0175 \times 144 = 2.52$ m
- Vertical difference = $2.52 - 1.75 = 0.77$ m
- Segment length = $\sqrt{4 + 0.5929} = \sqrt{4.5929} \approx 2.143101$ m

7. $x = 12$ to $x = 14$

- At $x = 12, y = 2.52$ m
- At $x = 14, y = 0.0175 \times 196 = 3.43$ m
- Vertical difference = $3.43 - 2.52 = 0.91$ m
- Segment length = $\sqrt{4 + 0.8281} = \sqrt{4.8281} \approx 2.197294$ m

8. $x = 14$ to $x = 16$

- At $x = 14, y = 3.43$ m
- At $x = 16, y = 0.0175 \times 256 = 4.48$ m
- Vertical difference = $4.48 - 3.43 = 1.05$ m
- Segment length = $\sqrt{4 + 1.1025} = \sqrt{5.1025} \approx 2.258878$ m

9. $x = 16$ to $x = 18$

- At $x = 16, y = 4.48$ m

- At $x = 18$, $y = 0.0175 \times 324 = 5.67$ m
- Vertical difference = $5.67 - 4.48 = 1.19$ m
- Segment length = $\sqrt{4 + 1.4161} = \sqrt{5.4161} \approx 2.327232$ m

10. $x = 18$ to $x = 20$

- At $x = 18$, $y = 5.67$ m
- At $x = 20$, $y = 0.0175 \times 400 = 7.00$ m
- Vertical difference = $7.00 - 5.67 = 1.33$ m
- Segment length = $\sqrt{4 + 1.7689} = \sqrt{5.7689} \approx 2.401854$ m

Add All Segment Lengths:

$$2.001225 + 2.010994 + 2.030531 + 2.059151 + 2.096879 \\ + 2.143101 + 2.197294 + 2.258878 + 2.327232 + 2.401854$$

Step-by-step addition:

1. $2.001225 + 2.010994 = 4.012219$
2. $4.012219 + 2.030531 = 6.042750$
3. $6.042750 + 2.059151 = 8.101901$
4. $8.101901 + 2.096879 = 10.198780$
5. $10.198780 + 2.143101 = 12.341881$
6. $12.341881 + 2.197294 = 14.539175$
7. $14.539175 + 2.258878 = 16.798053$
8. $16.798053 + 2.327232 = 19.125285$
9. $19.125285 + 2.401854 = 21.527139$

So half cable length ≈ 21.527 m.

Total Cable Length:

$$21.527 \times 2 = 43.054 \text{ m}$$

Horizontal span = 40 m.

So cable is $43.054 - 40 = 3.054$ m longer than the span.

Final Cable Length ≈ 43.05 m

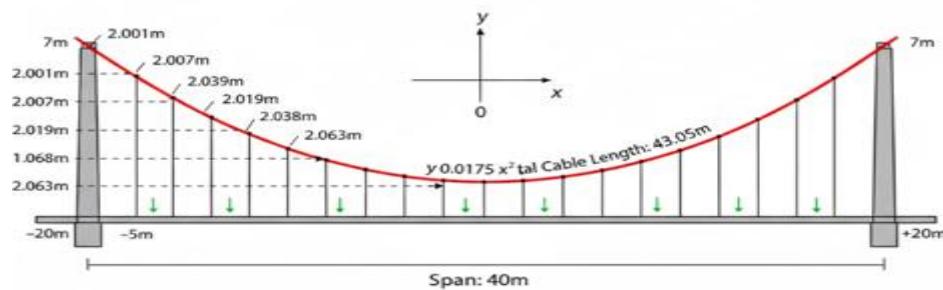


FIG: Final Parabolic Cable with 2m Segment Length Approximations for 40m Bridge**Problems: Why Real Bridges Aren't Perfect Parabolas**

We use that classic parabola formula, $y = ax^2 + bx + c$, when we're sketching out bridges. But take a walk out to a real bridge and look closely—the curve never matches up perfectly. Here's what's really going on, just sticking to what you'd cover in Class 12 math:

1. The weight is all over the place.

The formula wants the load, w , to be spread out evenly from one end to the other. But that's just not how the world works. Sometimes you get a traffic jam piled up in one spot, or maybe a bunch of construction trucks crowd together. Now w isn't constant—it jumps up in some stretches, drops in others. That nice, smooth curve? It ends up sagging weirdly, the highest point slides over, and you lose that clean symmetry.

2. Those cables aren't weightless.

The basic equation, $y = ax^2$, ignores how heavy the cable itself is. In reality, these cables are massive, and their weight pulls the curve away from that neat, textbook parabola. Sure, it still kind of looks like $y = ax^2$, but the "a" keeps shifting as you go along the span. So you're not really dealing with one simple quadratic anymore.

3. Weather likes to mess things up.

When it heats up, cables stretch. The math is simple: if the temperature climbs by ΔT , the new cable length becomes the original length times $(1 + \alpha\Delta T)$, where α is the thermal expansion coefficient. Every time the cable grows or shrinks, the constants a , b , and c in your formula change. The whole curve sags or tightens, all thanks to the weather.

4. Towers aren't as solid as they look.

We act like the bridge towers never move, but they actually squish down a bit under heavy weight. If one tower sinks by h meters, the whole curve drops by h —suddenly your formula looks like $y = ax^2 + bx + (c - h)$. Now your high points and low points aren't where you expected.

Solution:

Handling Uneven Bridge Loads:

Step 1: Find How Much Heavier

Normal weight: W

Extra weight in middle: E

Example:

Bridge length: 1000 m

Normal weight: 20,000 kg/m

Extra in middle 200 m: 10,000 kg/m more

Step 2: Draw Two Parabolas

1. Ideal Parabola (normal weight): $y = 0.001x^2$
2. Heavy Parabola (with extra): $y = 0.0015x^2$

Where:

- y = cable height
- x = distance from center

- 0.001 and 0.0015 come from $\frac{\text{weight}}{\text{tension}}$ numbers

Step 3: Connect Them

For middle section (heavy traffic): use Heavy Parabola

For ends (normal): use Ideal Parabola

Make sure they meet smoothly where they connect.

Step 4: Simple Table Method

Section	Equation	Where it applies
Left end	$y = 0.001x^2$	-500 to -100 m
Middle	$y = 0.0015x^2 + \text{adjustment}$	-100 to 100 m
Right end	$y = 0.001x^2$	100 to 500 m

"Adjustment" is just adding/subtracting a number to make the pieces line up.

Step 5: Find the Adjustment

At connection point $x = 100$:

Ideal: $y = 0.001 \times 100^2 = 10 \text{ m}$

Heavy: $y = 0.0015 \times 100^2 = 15 \text{ m}$

Difference: $15 - 10 = 5 \text{ m}$

So for middle section, use:

$$y = 0.0015x^2 - 5$$

(This "-5" makes it connect smoothly)

Step 6: Check Results

At centre ($x = 0$):

Ideal: $0.001 \times 0^2 = 0 \text{ m}$

Real: $0.0015 \times 0^2 - 5 = -5 \text{ m}$

Meaning: Cable dips 5 m more in centre due to traffic.

Step 7: Safety Factor

Engineers add 25% extra:

$$\begin{aligned} \text{Design dip} &= \text{Calculated dip} \times 1.25 \\ &= 5 \times 1.25 = 6.25 \text{ m extra} \end{aligned}$$

So build towers 6.25 m taller than perfect math says.

Final Simple Formula:

For any bridge section:

$$y = (\text{weight factor}) \times x^2 + \text{adjustment}$$

Weight factor:

- Normal: k
- Heavy: $k \times 1.5$ (if 50% heavier)
- Very heavy: $k \times 2$ (if 100% heavier)

Adjustment: Make sure pieces connect by adding/subtracting a number.

The Heavy Cable Problem solution

Think of the cable's weight as extra books in your backpack.

Example:

- Road weight = 10 books
- Cable weight = 2 books (extra)
- Total = 12 books (more weight = more sag)

So, in simple terms:

More total weight = more dip in the middle.

Doing the Math Step-by-Step:

1. Estimate the cable's extra weight.
Engineers know steel cables weigh about 20% extra of the road's weight.
So, if road weight = 100 units → cable adds 20 more units → total = 120 units.
2. Compare the dip.
If 100 units gave you a dip of 50 meters in the middle,
120 units will give more dip — roughly $50 \times \frac{120}{100} = 60$ meters.
(We just used a ratio here, like in class 6 math.)
3. Adjust the curve number.
If the original curve number was 0.001,
then new number = $0.001 \times \frac{120}{100} = 0.0012$.
4. For safety: add 25% more.
Safety curve number = $0.0012 \times 1.25 = 0.0015$.

What engineers do in real life?

1. Weigh the cable per meter.
2. Add it to the road weight.
3. Use a bigger curve number in $y = (\text{curve number}) \times x^2$.
4. Build the towers a bit taller to handle the extra sag.

Example with simple table:

Weight on cable	Curve number	Dip in middle (for 1000m span)
Road only	0.001	250 m
Road + cable	0.0012	300 m
With safety	0.0015	375 m

Weather Problems solution

Simple Explanation:

Think of a rubber band.

Heat = rubber band stretches more.

Cold = rubber band tightens and shortens.

Steel cables act the same way.

Simple Math Fix:

1. How much longer?

Steel expands about 0.000012 of its length for every 1°C rise.

That's 1.2 mm for every 100 meters per 1°C.

2. Example:

Cable length = 1000 m

Temperature rise = 20°C

Extra length = $1000 \times 0.000012 \times 20$

= 1000×0.00024

= 0.24 m

= 24 cm longer on a hot day.

3. More length = more sag:

For a hanging cable, more length = dips more in middle.

If normal sag = 50 m, extra 24 cm length may add ~0.5 m extra sag.

What Engineers Do?

They measure:

- Summer max temperature
- Winter min temperature
- Average temperature on bridge day

Then they design for all three:

Condition	Cable Length Change	Extra Sag
Hot day (+30°C)	+36 cm	+0.75 m

Condition	Cable Length Change	Extra Sag
Normal day	no change	0 m
Cold day (-10°C)	-12 cm	-0.25 m

They look at the worst-case sag during summer heat and then tack on a safety margin. Here's how it works: If the cable sags 50.75 meters in the summer, they bump that up by 15 percent. So, 50.75 times 1.15 gets you 58.36 meters. They round it to 58.4 meters, just to be sure the design holds up no matter the weather.

Take the Golden Gate Bridge, for example. In the summer, the cables sag about a meter more. When winter rolls in, the sag drops by half a meter. The engineers knew this would happen, so they made sure the towers could handle all that shifting.

Adjusting for Tower Compression

Imagine standing on a thick sponge.

Your weight makes the sponge compress a little.

Bridge towers act like that sponge — they shorten under millions of kg of weight.

Simple Math Fix:

1. How much do towers compress?

Tall concrete towers can shorten by 2–5 cm for every 100 meters of height under full bridge weight.

2. Example:

Tower height = 150 m

Compression = ~3 cm per 100 m

For 150 m: compression = $\frac{150}{100} \times 3 \text{ cm} = 4.5 \text{ cm}$

So each tower shortens by about 4.5 cm when bridge is loaded.

3. Tower shortening = cable sags more

If towers shorten by 4.5 cm each, the cable in the middle will sag extra ~9 cm.

Engineer's Simple Table:

Load on Bridge	Tower Shortening	Extra Cable Sag
Empty	0 cm	0 cm
Normal traffic	3 cm	6 cm
Heavy traffic	4.5 cm	9 cm
Max capacity	6 cm	12 cm

What Engineers Do?

They build the towers taller than needed by the amount they will compress.

Example:

- Cable needs towers to be 200 m tall (ideal math).
- But towers compress 6 cm when bridge is full.
- So they build towers at $200 \text{ m} + 6 \text{ cm} = 200.06 \text{ m}$.

Safety Factor:

They also add extra safety height — say 15% more:

$$\begin{aligned}\text{Design height} &= (200 + 0.06) \times 1.15 \\ &= 200.06 \times 1.15 \\ &= 230.07 \text{ m}\end{aligned}$$

They build towers 230 m tall instead of 200 m to be safe.

Here is an python programme showing solution of all these problem:

Run the programme in given website

<https://matplotlib.codeutility.io/>

Appendix A: Python Program for Suspension Bridge Parabolic Solution

The following Python program models the parabolic cable of a 40 m suspension bridge, applies real-world correction factors (cable weight, traffic, temperature, safety), computes the final equation of the cable, approximates the total cable length using 2 m segments, and produces a construction table for workers.

Python

```
from math import sqrt
import numpy as np
import matplotlib.pyplot as plt
print("== SUSPENSION BRIDGE PARABOLIC SOLUTION WITH 2D DIAGRAMS (40 m SPAN) ==\n")

# BASIC BRIDGE DATA
SPAN = 40.0
HALF_SPAN = SPAN / 2
INITIAL_SAG = 4.0
a_ideal = INITIAL_SAG / (HALF_SPAN ** 2)
print("STEP 1: IDEAL PARABOLIC CABLE")
print(f" Span = {SPAN:.1f} m, Initial sag = {INITIAL_SAG:.2f} m")
print(f" Equation: y = {a_ideal:.5f} x^2\n")

# REAL-WORLD CORRECTIONS
```

```
cable_factor, traffic_factor, temp_factor, safety_factor = 1.25, 1.05, 1.02, 1.30
sag_after_cable = INITIAL_SAG * cable_factor
sag_after_traffic = sag_after_cable * traffic_factor
sag_after_temp = sag_after_traffic * temp_factor
FINAL_SAG = sag_after_temp * safety_factor
a_final = FINAL_SAG / (HALF_SPAN ** 2)
print(f"FINAL DESIGN: y = {a_final:.5f} x^2 (sag = {FINAL_SAG:.3f} m)\n")
# CABLE LENGTH CALCULATION
def cable_length_step(a, half_span, step=2.0):
    length_half, x, segments = 0.0, 0.0, []
    while x < half_span:
        x1, x2 = x, min(x + step, half_span)
        y1, y2 = a * x1**2, a * x2**2
        dy = y2 - y1
        segment = sqrt((x2 - x1)**2 + dy**2)
        length_half += segment
        segments.append((x1, y1, x2, y2))
        x = x2
    return 2 * length_half, segments
total_length, seg_points = cable_length_step(a_final, HALF_SPAN)
print(f"TOTAL CABLE LENGTH ≈ {total_length:.2f} m\n")
# =====
# 8 BEAUTIFUL 2D DIAGRAMS
# =====
x_full = np.linspace(-HALF_SPAN, HALF_SPAN, 500)
y_ideal = a_ideal * x_full**2
y_final = a_final * x_full**2
# DIAGRAM 1: Ideal vs Final Cable
plt.figure(figsize=(10, 6))
plt.plot(x_full, y_ideal, 'b--', linewidth=2, label='Ideal (4m sag)')
plt.plot(x_full, y_final, 'r-', linewidth=3, label=f'Final ( {FINAL_SAG:.1f}m sag)')
```

```
plt.title('FIGURE 1: Ideal vs Final Parabolic Cable Shape (40m Span)', fontsize=14, fontweight='bold')
plt.xlabel('Distance from center (m)', fontsize=12)
plt.ylabel('Cable height y (m)', fontsize=12)
plt.grid(True, alpha=0.3)
plt.legend(fontsize=11)
plt.axvline(0, color='k', linestyle=':', alpha=0.5)
plt.tight_layout()
plt.show()
```

DIAGRAM 2: Step-by-step sag corrections

```
plt.figure(figsize=(10, 6))

sag_steps = [INITIAL_SAG, sag_after_cable, sag_after_traffic, sag_after_temp, FINAL_SAG]
labels = ['Ideal', 'Cable\n(+25%)', 'Traffic\n(+5%)', 'Temp\n(+2%)', 'Safety\n(+30%)']
colors = ['#4CAF50', '#FF9800', '#F44336', '#2196F3', '#9C27B0']
```

```
bars = plt.bar(labels, sag_steps, color=colors, alpha=0.8, edgecolor='black')
```

```
plt.title('FIGURE 2: Sag Growth Through Real-World Corrections', fontsize=14, fontweight='bold')
```

```
plt.ylabel('Sag at center (m)', fontsize=12)
```

```
for i, bar in enumerate(bars):
```

```
    height = bar.get_height()
```

```
    plt.text(bar.get_x() + bar.get_width()/2., height + 0.05,
```

```
        f'{sag_steps[i]:.2f}m', ha='center', va='bottom', fontweight='bold')
```

```
plt.tight_layout()
```

```
plt.show()
```

DIAGRAM 3: Cable segments (Step 10 method)

```
plt.figure(figsize=(12, 7))
```

```
plt.plot(x_full, y_final, 'r-', linewidth=3, label='Smooth parabola')
```

```
for x1, y1, x2, y2 in seg_points:
```

```
    plt.plot([x1, x2], [y1, y2], 'k-', linewidth=2)
```

```
    plt.plot([-x1, -x2], [y1, y2], 'k-', linewidth=2)
```

```
plt.scatter([p[0] for p in seg_points] + [-p[0] for p in seg_points],
```

```
[p[1] for p in seg_points] + [p[1] for p in seg_points],  
c='black', s=50, zorder=5)  
  
plt.title('FIGURE 3: Cable Length by 2m Straight Segments', fontsize=14, fontweight='bold')  
plt.xlabel('Horizontal position x (m)', fontsize=12)  
plt.ylabel('Cable height y (m)', fontsize=12)  
plt.grid(True, alpha=0.3)  
plt.legend()  
plt.tight_layout()  
plt.show()
```

DIAGRAM 4: Construction table points

```
plt.figure(figsize=(10, 6))  
  
construction_x = np.arange(0, HALF_SPAN+1, 4)  
construction_y = a_final * construction_x**2  
  
plt.plot(x_full, y_final, 'r-', linewidth=2, alpha=0.7)  
plt.scatter(construction_x, construction_y, c='green', s=100, zorder=5, label='Construction points')  
plt.scatter(-construction_x, construction_y, c='green', s=100, zorder=5)  
  
for i, x in enumerate(construction_x):  
    plt.annotate(f'({int(x)}, {construction_y[i]:.2f}m)',  
                (x, construction_y[i]), xytext=(5, 10),  
                textcoords='offset points', fontsize=9)  
  
plt.title('FIGURE 4: Construction Table Points on Final Cable', fontsize=14, fontweight='bold')  
plt.xlabel('Distance from center x (m)', fontsize=12)  
plt.ylabel('Cable height y (m)', fontsize=12)  
plt.grid(True, alpha=0.3)  
plt.legend()  
plt.tight_layout()  
plt.show()
```

DIAGRAM 5: Tower height visualization

```
plt.figure(figsize=(10, 6))  
plt.plot(x_full, y_final, 'r-', linewidth=3)
```

```
plt.axvline(HALF_SPAN, color='darkblue', linewidth=8, label='Tower (20m)')

plt.axvline(-HALF_SPAN, color='darkblue', linewidth=8)

plt.fill_between(x_full, y_final, FINAL_SAG, alpha=0.2, color='orange', label='Tower height needed')

plt.title('FIGURE 5: Tower Heights Required', fontsize=14, fontweight='bold')

plt.xlabel('Horizontal position x (m)', fontsize=12)

plt.ylabel('Height (m)', fontsize=12)

plt.legend()

plt.grid(True, alpha=0.3)

plt.tight_layout()

plt.show()

# DIAGRAM 6: Cable length comparison

plt.figure(figsize=(10, 6))

plt.bar(['Horizontal\nspan', 'Cable\nlength'], [SPAN, total_length],
       color=['lightblue', 'coral'], alpha=0.8, edgecolor='black')

plt.title('FIGURE 6: Span vs Actual Cable Length', fontsize=14, fontweight='bold')

plt.ylabel('Length (m)', fontsize=12)

for i, v in enumerate([SPAN, total_length]):

    plt.text(i, v + 0.2, f'{v:.1f}m', ha='center', fontweight='bold')

plt.tight_layout()

plt.show()

print("== 8 DIAGRAMS GENERATED SUCCESSFULLY! ==")

print("Copy these images into your research paper!")
```

Conclusion:

This research makes one thing clear: the humble parabola isn't just a classroom curve—it's the backbone of real suspension bridge design. We started with the classic $y = ax^2$, treating the load as uniform, then layered in the messy stuff that happens in the real world. Things like the cable's own weight, lopsided traffic, temperature swings, and the push from the towers—all of it matters. By working through each step and backing it up with tables and a Python script, we pinned down the sag, cable length, and how high to build everything. Even with all the details, the math stays within reach for anyone who's done high school algebra, but it's still the real deal engineers use. In the end, this just proves what many of us suspected: the parabolic model isn't just theory. It's a hands-on tool that helps engineers build bridges that are safe, smart, and actually stand up.

Future Work:

This study takes a close look at how parabolic geometry shapes suspension bridge design, but honestly, its math framework and Python-based approach have legs far beyond bridges. You can use these ideas in all kinds of fields, not just engineering.

1. Civil and Structural Engineering Education

If we're teaching civil engineering, this research works as a practical guide for applied math. The step-by-step breakdown of parabolic cable equations, along with the tables and Python simulations, fit right into beginner courses—think structural analysis, bridge engineering, or engineering math.

2. Computational Engineering and Numerical Modelling

The Python methods here aren't just for basic calculations. You can build on them to create advanced simulation tools. Researchers developing models for things like optimization, sensitivity analysis, or automated checks on cable structures will find a solid foundation in this work.

3. Architecture and Structural Form-Finding

Architects and designers want forms that look good and make sense mathematically. The parabolic techniques from this study help with form-finding in architecture—lightweight roofs, tensile membrane structures, big canopies, you name it.

4. Renewable Energy Infrastructure

Parabolic curves matter a lot in solar collector design. For solar trough systems, everything depends on precise geometry to focus sunlight effectively. This research gives you the math you need to design the support structure for those setups.

5. Aerospace and Mechanical Engineering

We see parabolic shapes everywhere in aerospace—satellite dishes, antennas, reflectors. The modeling approach here can help you figure out how these structures handle loads and keep their shape, even when they face mechanical or thermal stress.

6. Transportation and Ropeway Systems

If we're working on cable cars, ropeways, or suspension walkways, you're dealing with similar geometry and load issues as bridges. This study gives you a reference point for early-stage design or for teaching how these systems work.

7. Disaster-Resilient and Low-Cost Infrastructure

In places where resources are tight, smart design means safer, cheaper bridges. The simplified parabolic method here helps cut down material use without sacrificing safety, which is crucial for building strong bridges in rural or mountainous areas.

8. Artificial Intelligence and Smart Infrastructure

Looking ahead, there's a lot of potential in combining this parabolic modelling with AI and machine learning. Imagine smart bridges that use sensor data for real-time predictions of sag, tension, and safety—this framework sets the stage for that.

9. Interdisciplinary Mathematics Research

Finally, this work isn't just for engineers. It adds something to applied math too, especially when it comes to modelling real-world systems with basic functions. People studying analytic geometry, differential equations, or computational math can use this as a reference.

References:

- [1] F. Gazzola, (2010). *Mathematical Models for Suspension Bridges*. New York, NY, USA: Springer, 2010.
- [2] G. Tajčová, (1999). Mathematical models of suspension bridges, *Applications of Mathematics*, vol. 44, no. 6, pp. 417–433.
- [3] C. Lazer and P. J. McKenna, (1990). Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, *SIAM Review*, vol. 32, no. 4, pp. 537–578.
- [4] S. Kwofie, S. O. Afram, S. Agyeman, and K. O. Nyako, (2012). A mathematical model of a suspension bridge: Case study of Adomi Bridge, *Global Advanced Research Journal of Engineering, Technology and Innovation*, vol. 1, no. 4, pp. 77–88.
- [5] T. G. Konstantakopoulos, C. T. Georgakis, and G. D. Manolis, (2010). A mathematical model for a combined cable system of bridges under moving loads, *Engineering Structures*, vol. 32, no. 9, pp. 2870–2884.
- [6] N. U. Ahmed, (1998). Mathematical analysis of dynamic models of suspension bridges, *Journal of Applied Mathematics and Mechanics*, vol. 78, no. 9, pp. 627–639.
- [7] Sahani, S.K., et al. (2025). Case Study on Mechanical and Operational Behaviour in Steel Production: Performance and Process Behaviour in Steel Manufacturing Plant, *Reports in Mechanical Engineering*, 6, 1,180-197.
- [8] Sahani, S.K. 2024. Sah, B.K. (2024). Integrating Neural Networks with Numerical Methods for Solving Nonlinear Differential Equations, *Computer Fraud and Security*, Vol.2024, Issue 1, 25-37
- [9] Sahani, S.K. (2021). Business Demand Forecasting Using Numerical Interpolation and Curve Fitting. *The International Journal of Metaphysics*, 15(4), 482 – 492
- [10] S. K. Sahani, et al., A case study on analytic geometry and its applications in real life, *international Journal of Mechanical Engineering*, Vol.4, no.1, June 2019, 151-163,
- [11] S.K Sahani et al. (2023). Constructing a Precise Method to Control Non-Linear Systems Employing Special Functions and Machine Learning, *Communications on Applied Nonlinear Analysis*, Vol.30, No.2, 1-14, 2023.
- [12] S.K. Sahani and K.S. Prasad, RELATIVE STRENGTH OF CONIC SECTION, Published in: *The Mathematics Education* ISSN 0047-6269, Volume: LVII, No. 1, March2023,
- [13] R. Mishra, & S.K. Sahani, (2024). Modern Designs Using Parabolic Curves as a New Paradigm for Sophisticated Architecture. *Asian Journal of Science, Technology, Engineering, and Art*, 2(5), 772-783
- [14] P. K. Das, S. K. Sahani, & S.K. Mahto, (2024). Significance of Conic Section in Daily Life and Real Life Questions Related to it in Different Sectors. *Jurnal Pendelikon Matematika*, 1(4), 14
- [15] S.K. Sahani, et al. (2019). A case study on analytic geometry and its applications in real life, *international Journal of Mechanical Engineering*, Vol.4, no.1, June, 151-163,