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Abstract 

In the forging process, if the shape of the final part is complex, the raw material cannot be transformed into the 

shape of the final part in one forging step; therefore, the use of preform molds is essential. An optimal preform mold 

is a mold that can meet the design criteria. Design criteria include producing a defect-free part with the least volume 

of raw material, the least plastic strain, the least force required to perform the process, and also completely filling 

the final mold. In this research, using the ability of the continuous genetic algorithm to generate Cartesian paths, first 

several different preform mold shapes are produced using mathematical functions. Then, using finite element 

simulation of the process, the optimal mold selection criteria are calculated. From the information obtained from the 

simulation, the artificial neural network is trained so that it can predict the results of the simulation process. This 

network and design criteria are used for the objective function in the continuous genetic algorithm. Finally, the best 

shape of the preform mold is calculated by the continuous genetic algorithm, which is a mathematical function and 

is obtained by plotting this function in the Cartesian coordinates of the mold shape. Next, this method is used for a 

part with an H-shaped cross-section to examine its efficiency. The optimal preform mold for the part is calculated 

and its forging results are extracted by the continuous genetic algorithm. Also, finite element simulation is 

performed for the optimal mold to compare its results with the results obtained from the continuous genetic 

algorithm. Finally, the success of using this method was proven. 

 

Keywords: Optimal preform mold - Finite element method - Artificial neural networks - Continuous genetic 

algorithm 

1-Introduction 

The forging process holds a prominent position among manufacturing methods due to its ability to produce 

components with excellent mechanical properties while minimizing material waste. In forging, the initial material, 

often with a relatively simple geometry, undergoes plastic deformation through one or more operations to achieve a 

final product with a relatively complex configuration. Forging typically requires relatively expensive tooling. 

Consequently, the process is economically attractive either when a large number of parts are produced or when the 

required final mechanical properties can only be achieved through a forging process. In closed-die forging, the raw 

material is deformed under immense pressure within the die cavity. However, when the final part geometry is 
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complex, the desired deformation cannot be accomplished in a single stage. Attempting to produce complex parts in 

one step often leads to critical defects such as incomplete die fill, lap/folding formation, improper material flow, 

and a sharp increase in forging forces, which consequently reduces die life (1, 2). To overcome these challenges, the 

use of one or more preform stages before the final operation is essential. The primary objective of preform die 

design is to control material flow in such a way that the initial material is converted into an optimal geometry for the 

final stage. An optimal preform must ensure adherence to critical design criteria: the absence of defects in the final 

part, minimization of raw material consumption, uniform plastic strain for enhanced mechanical properties, 

reduction of the required forging force, and guaranteeing complete final die fill. Traditionally, preform design has 

relied heavily on the experience of engineers and the costly trial-and-error method, which significantly increases 

both production time and cost (3, 4, 5). In recent decades, with significant advances in computational power, process 

simulation using the Finite Element Method (FEM) has become a powerful and standard tool for analyzing and 

evaluating metal forming processes. Software packages like DEFORM and ABAQUS enable accurate modeling of 

material flow, temperature distribution, strain, and stresses, as well as the prediction of defect occurrences. FEM 

effectively replaces physical trial-and-error, offering deep insight into the process mechanics. Nevertheless, the 

process of optimizing the preform shape through iterative FEM simulations remains a major computational 

challenge due to the time-consuming nature of each simulation run. To accelerate and rationalize the design process, 

Artificial Intelligence (AI) methods and Metaheuristic Optimization Algorithms have been introduced. These 

novel approaches, particularly the integration of Artificial Neural Networks (ANN) with the Genetic Algorithm 

(GA), have shown great potential in overcoming the computational limitations of the standalone FEM approach (6, 

7, 8, 9). Artificial Neural Networks (ANNs) are capable of creating a surrogate model (or metamodel) of the 

complex physical process. Using limited and targeted data generated by FEM simulations, the ANN is trained to 

rapidly predict the non-linear relationship between preform geometric parameters (input) and performance criteria 

(output), such as forging force or die fill, with acceptable accuracy. This approach significantly reduces the need for 

computationally expensive, repetitive FEM simulations during the optimization phase (10, 11, 12). The Genetic 

Algorithm (GA), an optimization technique inspired by natural evolution, is a highly effective tool for searching 

large and complex design spaces. GA is well-suited for solving non-linear, multi-objective optimization 

problems, such as preform shape optimization, where the goal is the simultaneous reduction of several performance 

metrics (e.g., force, material waste, and strain) (13). One of the most important optimization variants is the 

Continuous Genetic Algorithm (CGA). This method offers the capability to optimize continuous problems. 

Abuhomour et al. presented a method using CGA to optimize the trajectory of robot arms. This method is applicable 

to generating Cartesian paths, or in other words, curves in Cartesian coordinates. In any problem where the 

solution takes such a form, this method can be employed to find the optimal solution (14, 15). In some continuous 

optimization problems, the solution is a smooth, continuous surface or curve. Examples include finding the optimal 

trajectory for robots and the solution to a differential equation. Regarding forging preforms, if the die shape is 

modeled as a surface, the solution can be obtained using two-dimensional mathematical functions; however, if the 

die shape is modeled as a curve, one-dimensional mathematical functions are used to solve the problem. Figure (1) 

shows an example of a curve solution, and Figure (2) shows an example of a surface solution. 

  
Figure (2) Example of a Surface Response 

 
Figure (1) Example of a Curve Response 

 



Eksplorium  p-ISSN 0854-1418 

Volume 46 No. 2, September 2025:  1167–1182 e-ISSN 2503-426X 

1169 

Since the component selected for preform die design is axisymmetric (axially symmetric), its preform shape is 

represented by a curve. Therefore, the subsequent discussion focuses on the curve-shaped die geometry. One study 

introduced a method for executing the steps of the Continuous Genetic Algorithm (CGA) using the Hyperbolic 

Tangent and Gaussian mathematical functions. In this approach, the curves for the initial population as well as the 

crossover and mutation stages were all generated using these functions. Their method is highly applicable to 

problems where there is no prior knowledge regarding the shape of the solution curve (16). Several examples of 

mathematical functions that can be utilized in this context are presented in Figure (2). 

 

Figure (3) Two examples of mathematical functions 

 By modifying the parameters of these functions, various distinct curves are produced. For preform die design in 

axisymmetric components, estimating the preform shape is simpler because the final die shape is known. Forging 

experience indicates that the preform shape bears a strong resemblance to the final die; thus, its estimation is not 

unduly challenging. It suffices to use functions that generate a shape close to the final die to produce the preform 

curve. The curve shape changes as the parameters of these functions are varied. Furthermore, a combination of 

several functions can be used to achieve the desired shape. By varying the parameters of these functions, numerous 

states for the curve shape are generated, and the role of the Continuous Genetic Algorithm (CGA) here is to find 

the optimal set of parameters for the utilized mathematical functions to yield the optimal curve shape. Recent 

research has demonstrated that the integration of Intelligent Techniques and Simulation is the key to achieving 

high-performance optimal designs. For instance, multiple studies have successfully employed the FEM-ANN-GA 

combination for optimizing the forging process. In an approach similar to the current research, the capability of the 

Continuous Genetic Algorithm (CGA) to generate Cartesian paths and model preform shapes using 

mathematical functions has been proven (14). This method allows the entire preform shape to be optimized as a 

continuous function, instead of optimizing limited parameters, thereby offering greater flexibility and accuracy in 

designing the optimal geometry. In this integrated approach, the predictions from the Artificial Neural Network 

(ANN)—trained on FEM data—are utilized as the Objective Function for the Continuous Genetic Algorithm. This 

research presents a comprehensive and integrated methodology for the optimal preform die shape design in the 

forging process. This approach is founded on leveraging the complementary strengths of Finite Element Method 

(FEM) for generating precise data, Artificial Neural Networks (ANN) for creating a rapid prediction model 

(Surrogate Model), and the Continuous Genetic Algorithm (CGA) for searching and determining the most 

optimal preform geometry (modeled as a mathematical function). Finally, the effectiveness of this advanced 

approach will be investigated and validated using a key industrial component with an H-shaped cross-section, 

where preform design is challenging due to the complex geometry (6). The comparison between the final FEM 

simulation results of the optimal preform and the predictions from the hybrid model will validate the efficacy of 

this intelligent methodology in enhancing product quality and reducing production costs in the forging industry. 
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2. Research Methodology 

The research methodology employed in this study is an integrated and intelligent methodology based on the 

synergy of three powerful tools: the Finite Element Method (FEM), Artificial Neural Networks (ANN), and the 

Continuous Genetic Algorithm (CGA). The main goal is to convert the preform design problem into a 

mathematical optimization problem and solve it using an intelligent approach. This process is executed in several 

primary, structured stages: 

1. Definition of Criteria and Design Space 

• Design Criteria (Objective Function): First, the required technical criteria for selecting the optimal preform die are 

precisely defined. These criteria include minimizing the volume of raw material (flash reduction), minimizing non-

uniform plastic strain, minimizing the process force requirement, and ensuring complete final die cavity fill and 

the absence of defects like folding. These criteria are ultimately incorporated into the Fitness Function of the 

Genetic Algorithm. 

• Preform Geometry Modeling: To establish the design space, the capability of the Continuous Genetic Algorithm 

(CGA) for Cartesian path generation is utilized. In this phase, the preform die shape is modeled as a continuous 

mathematical function. The parameters of this function (e.g., polynomial coefficients or Bezier curve parameters) 

are considered the design variables (genes) for the Genetic Algorithm. Initially, several different shapes are 

randomly generated using the mathematical functions. 

2. Data Generation and Finite Element Simulation (FEM) 

• Process Simulation: The preform shapes generated in the previous step are analyzed using FEM-based simulation 

software (such as DEFORM or ABAQUS). The forging process (e.g., hot or cold forging) is simulated for each 

preform geometry. 

• Result Extraction: From the results of each simulation, the quantitative data required for evaluating the design 

criteria (such as maximum forging force, generated flash volume, and effective strain distribution) are extracted and 

collected. This dataset (including the mathematical parameters of the preform shape as inputs and the FEM results as 

outputs) is used to train the surrogate model. 

3. Development of the Surrogate Model with Artificial Neural Networks (ANN) 

• Neural Network Training: The data obtained from the FEM simulations is used to train an Artificial Neural 

Network. The goal of ANN training is to create a Surrogate Model that can predict the design criteria (FEM 

results) with very high speed and acceptable accuracy, given the mathematical parameters of the preform shape. 

This effectively eliminates the need for time-consuming FEM simulation in every iteration of the optimization 

process. 

• ANN Validation: The accuracy of the trained neural network is assessed using a test dataset that was not used 

during the training process, ensuring the model possesses adequate generalization capability. 

4. Preform Shape Optimization with Continuous Genetic Algorithm (CGA) 

• Model Integration: The trained ANN model replaces the FEM simulation process and is incorporated as the 

Objective Function (or a component of the fitness function) within the Continuous Genetic Algorithm. 

• Optimization Execution: The CGA is executed with the aim of optimizing the fitness function. By searching the 

space of mathematical parameters, the algorithm finds a set of parameters that results in a preform simultaneously 

satisfying the defined criteria (minimum force, minimum waste, etc.). 
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• Optimal Shape Calculation: Finally, the best individual (the optimal set of mathematical parameters) determined 

by the CGA is selected as the mathematical function for the optimal preform die shape. The optimal geometric 

shape is obtained by plotting this function in Cartesian coordinates. 

5. Case Study and Validation 

• Practical Application (H-Shaped Case Study): The developed methodology is applied to a specific industrial 

component with an H-shaped cross-section. The optimal preform die shape for this part is calculated by the CGA. 

• Final Validation: To confirm the accuracy and effectiveness of the hybrid method (FEM-ANN-CGA), a final 

FEM simulation is performed for the determined optimal preform die. The results of this FEM simulation (including 

forging force, strain distribution, and die fill status) are directly compared with the results predicted by the 

Continuous Genetic Algorithm (using the ANN model). This comparison proves the success of the proposed method 

in achieving the optimization objective and validating the accuracy of the intelligent models. 

 

3. Optimal Preform Die Design Using Neural Networks and Continuous Genetic Algorithm 

To obtain the preform die shape for forging components, mathematical functions that are capable of generating the 

die geometry can be utilized. The optimal shape is subsequently determined using the Continuous Genetic 

Algorithm's (CGA) ability to optimize continuous problems. 

Using the CGA in optimization necessitates repeated analyses of the process (e.g., 1000 times) under different 

conditions to find the best preform shape. Given that Finite Element analysis is a time-consuming process, 

repeated iterations would require an excessive amount of time. To reduce the time required to find the optimal 

preform die, the use of Artificial Neural Networks (ANNs) is rational. Thus, instead of running the FEM analysis 

for the process repeatedly, a network is designed and trained to provide the necessary results promptly. 

Figure (2) shows the component under study with its dimensions . The dimensions are in millimeters (mm). For 

modeling this component in ABAQUS, one-quarter of the total part is considered due to symmetry, as shown in 

Figure (4) . 

 

 

Figure (4) Geometry of H-shaped piece 

Given the component's geometry, its final die is modeled as a curve, as depicted in Figure (4) . The preform die for 

this component will also be curve-shaped, similar to the final die. Naturally, a narrow flash gutter will be included 

in the final die to improve material flow and allow excess material to be expelled as flash. 
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Figure (6) Final Die Shape  Figure (5) Required Component Geometry for 

Abaqus Modeling 

 

Calculation of Raw Material Volume 

To calculate the volume of the raw billet, it is essential to consider that during the forging process, a portion of the 

component's surface oxidizes, and flash is formed. Therefore, if the raw material volume is considered equal to the 

final part volume, cavities will be observed after the process (8). 

Various rules and formulas exist for calculating the initial raw material volume, mostly based on the oxidation rate 

and the amount of flash generated. Since none of these formulas offer sufficient accuracy, the volume of the initial 

raw material in this study was determined by trial-and-error. The raw billet for this die is considered a cylinder 

with a height of 0.9 meters and a radius of 0.3 meters. Since the raw billet is also axisymmetric, only one-quarter 

of the component is used for modeling, which is represented as a rectangle with a height of 450 mm and a width of 

300 mm. 

3-1. Material Characteristics and Preform Die Geometry Design 

This section of the research addresses three main axes: determining the physical properties of the raw material at 

the process temperature, defining the number of preform stages required for the component under study, and the 

mathematical modeling of the preform die geometry for the optimization process. 

1. Raw Material Physical Properties and Process Conditions 

The raw material selected for this research is AL2014 Aluminum Alloy. Since the forging process is performed at a 

high temperature, specifically 400∘C, the material's mechanical properties must be accounted for at this temperature. 

Feature V

alue 

Material Type A

L2014 

Process 

Temperature 

40

0∘C 

Initial Yield 

Stress (σs) 

23

.7 MPa 

Poisson's Ratio 0.

33 

Elastic 

Modulus 

27

.9 GPa 
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Plastic Stress-Strain Relationship: 

The constitutive relationship governing the material's plastic behavior is expressed as a power law function of 

plastic strain (ϵ):  

σ=σs+Cϵm 

Where: 

• C (Strength Coefficient/Flow Constant) is 1.02×108 MPa. 

• m (Strain Hardening Exponent) is 0.11. 

This relationship is considered for modeling the material behavior in the Finite Element Method (FEM) 

simulation. 

2. Determining the Number of Preform Stages 

For forging processes with complex final part geometries, defining the optimal number of preform stages is crucial 

to prevent defects. In this research, for the studied component with an H-shaped cross-section, the method 

proposed by Thomas, based on the height-to-width ratio of the forged part, is employed. 

Given the dimensions of the H-shaped component used in this study, the height-to-width ratio falls within the range 

of 2 to 3. Consequently, only one preform stage is required. Thus, the entire forging process will consist of two 

stages: the preform die stage and the final die stage. 

3. Mathematical Modeling and Preform Die Design Parameters 

A) Mathematical Function for Preform Shape Generation 

To model the preform die shape and introduce geometric variability for the optimization process, the preform 

geometry is estimated as a continuous mathematical function. This curve shape is formed by the combination of 

two Hyperbolic Tangent functions that connect at point m. 

The general form of the function models the preform geometry as a function of the width coordinate (x) and the 

height coordinate (y). This function contains the coefficients a1, a2, and the connection point m, which are used as 

the design variables (primary input parameters) for the Continuous Genetic Algorithm (CGA). 

B) Preform Dimensions and Function Mapping 

Since only one preform stage is required, the preform die shape is considered an intermediate state between the 

initial billet (symmetric rectangle) and the final part (H-shape). 

• Preform Width: The average width between the initial billet (300 mm) and the final part (500 mm), which is 

400 mm, is selected. 

• Preform Height: Half of the height change of the final part (150 mm), which is 75 mm, is considered. 

Ultimately, the mathematical functions used are mapped to be within the width range [0,400] and the height range 

[0,75], forming the final relationship (4-4) of the optimization problem. Varying the parameters a1, a2, and m 

creates a wide variety of curve shapes (similar to Figure (4-5) in the original text) that cover the search space of the 

Genetic Algorithm. 

C) Problem Input and Output Parameters 

The design criteria for selecting the optimal die include: die fill percentage, required process force, plastic strain 

magnitude, and raw material volume. These criteria are divided into two categories: input parameters (those 

modified by the designer) and output parameters (process results that must be optimized): 



Eksplorium  p-ISSN 0854-1418 

Volume 46 No. 2, September 2025:  1167–1182 e-ISSN 2503-426X 

1174 

• Input Parameters: 

o Raw Billet Width (Discrete Variable): To regulate the raw material volume, the billet width is selected as 20 

discrete, predefined values between 300 mm and 305 mm (e.g., 300, 300.25, 300.5, etc.), instead of a continuous 

value. The Genetic Algorithm must find the optimal state among these 20 discrete values. 

o Preform Shape Parameters (a1,a2,m): These are the primary continuous variables for generating the die's 

geometry. 

• Output Parameters (Criteria): 

o Maximum required force (to reduce forging costs). 

o Component plastic strain magnitude. 

o Die fill percentage. 

o Raw material volume. 

Method of Drawing the Shape in Software (Abaqus) 

For simulation in Abaqus software, the continuous preform shape curve is modeled using the coordinates of 21 

points (resulting from dividing the width into 20 segments). To eliminate sharp corners at the connection points of 

the segments, the spline command is used. Due to the two-dimensional nature of the shape and software limitations, 

the 21 points are divided into 7 sections (each containing 3 points), and then the curve is smoothed using the spline 

command and ensuring tangency at the connection points, achieving an acceptable geometry for forging dies. 

 

4. Problem Solving 

In this section, the command to solve the problem is executed. A printout of the inputs and applied boundary 

conditions can also be generated before the operation begins. Here, the default settings of the software are used for 

problem solving, and the solution command is issued. 

4-1. Displaying Problem Solving Results 

This section presents the results obtained from solving the problem. The software provides various options for this 

purpose, allowing different results to be viewed visually or extracted numerically. Tools for plotting various graphs 

as needed are also available. In this research, three output parameters must be obtained from the simulation; the 

method of extracting them is presented below. 

The first parameter is Maximum Plastic Strain. Plastic strain is represented as PEEQ in Abaqus software. Figure 

(7) shows the plastic strain contour for this model, with a maximum value of 10.316 
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Figure (7) Plastic Strain Contour for the Simulated Model 

The second parameter that must be obtained from the process simulation is the Die Fill Percentage. As observed in 

Figure (5), due to the small volume of material or an unsuitable preform die, as well as the loss of some material as 

flash, the final die is not completely filled. It should be noted that a tool exists in Abaqus to calculate the volume of 

a closed part. However, since the component is modeled here as axisymmetric, it has symmetry in two directions, 

which results in the part being "open" in those two directions, making it impossible to calculate its volume using the 

built-in Abaqus tool. 

In this research, the analysis tool in Photoshop (1) is used to determine the die fill percentage. Initially, the results 

from Abaqus software are saved in PNG format with a resolution of 1056×453. Then, in Photoshop, the flash area 

is first removed, and the number of pixels of the final part is calculated using the analysis tool. By comparing this 

pixel count with the pixel count of the completely filled final die, the die fill percentage is obtained. Using this 

method, the die fill percentage for this model was obtained as 99.36%. 

The third parameter obtained from the simulation is the Maximum Force Required for Forging. As observed in 

the figure [referencing Figure 5-9 in the original thesis structure], the maximum force can be determined by plotting 

the force applied to the final die versus time. The maximum required force for this model is 

226 MegaNewtons (MN). 

 

Figure (8) Force vs. Time Diagram for the Final Die 
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5. Simulation, Intelligent Modeling, and Optimization of Preform Die 

5-1- Finite Element Method (FEM) Simulation and Result Extraction 

Three key output parameters were extracted from the simulations to evaluate the performance of the preform dies: 

Parameter Description Measurement 

Method & Example 

Maximum 

Plastic Strain 

(PEEQ) 

Indicates the plastic deformation in the part. Its value is read 

directly from the plastic 

strain contour in Abaqus 

software (e.g., in one case 

1.316×10−x). 

Die Filling 

Percentage 

Due to axisymmetric modeling and the part being 

open in Abaqus software, calculating the part volume with 

internal software tools is not possible. To resolve this, a 

creative method was used involving the analysis tool in 

Photoshop software. The filling percentage is calculated by 

comparing the number of pixels in the filled area of the final 

part with the number of pixels in the completely filled die 

(after flash area removal) (e.g., 99.36%). 

 

Maximum 

Forging Force 

Required 

This parameter is obtained by plotting the force versus 

time diagram (like Figure 5-9) and represents the maximum 

force consumed in the process (e.g., 226 Mega Newtons 

(MN)). 

 

 

• Finally, FEM simulation was performed for 100 cases (a combination of shape parameters and raw billet width), and 

the necessary results were extracted to train the neural network. 

5-2- Optimization with Artificial Neural Networks and Continuous Genetic Algorithm (ANN & CGA) 

1. Design and Training of Artificial Neural Network (ANN) 

• The neural network is designed as a high-speed surrogate model for predicting forging results (FEM outputs) and 

is trained using MATLAB software. 

• In this research, a multi-criteria objective function is defined in MATLAB so that its minimization by the Genetic 

Algorithm leads to finding the optimal die. 

 

6. Finding the Optimal Preform Die State by Neural Network and Continuous Genetic Algorithm 

6-1- Designing and Training Several Neural Networks and Selecting the Appropriate Neural Network 

• Several neural networks with different topologies are designed. These networks are then trained, and the optimal 

network is selected based on performance indicators to continue the research process. 

• Of course, to train the network, the data must first be normalized. 

 

 



Eksplorium  p-ISSN 0854-1418 

Volume 46 No. 2, September 2025:  1167–1182 e-ISSN 2503-426X 

1177 

6-3-1- Data Normalization 

• Because the range of variation in the data is small, normalization is used to put the range of all data at one level, 

which increases the accuracy and reduces the error of the neural network. Data normalization means scaling them 

within a specified range. 

• Among the commands used in MATLAB software to normalize neural network data is the mapminmax function. 

This function scales the data within the desired range. 

• In this research, this function is used to scale the problem's input and output data in the range [0, 1]. Note that 

subsequently, whenever a new input needs to be entered, that input must be scaled in the desired range, and 

whenever a new output is needed, the output is returned to its original value using the inverse command of this 

function. 

6-2- Selecting the Optimal Network 

Table (2) shows the results of running the network for several different topologies. As is clear, the network with 

layers 3, 40, 20 (i.e., the network with two hidden layers of 40 and 20 neurons) has the best MSE and correlation 

coefficient. 

Table (2) Results from running networks with different topologies 

R

ow 

Topology MSE Correl

ation 

Coefficient 

Minimu

m Error 

Maximu

m Error 

1 3, 12, 5 0.0089 0.87 -0.33 0.47 

2 3, 15, 12 0.0023 0.97 -0.14 0.35 

3 3, 21, 18 0.00022 0.94 -0.21 0.10 

4 3, 40, 20 0.000005 0.99 -0.03 0.05 

 

Figure (9) shows the correlation coefficient graph for the training and testing state of the network, and Figure (10) 

shows the network performance. 

3

 

2

 

1

 

Figure (10) Performance 

Diagram of 3, 40, 20 Network 

Figure (9) Correlation Coefficient Diagram for Training and Testing 

State of 3, 40, 20 Network 

6-3- Using Continuous Genetic Algorithm to Find the Optimal Preform Die State 
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• In this section, an objective function is first defined for the Genetic Algorithm based on the design criteria. Then 

the Genetic Algorithm parameters are selected, and the optimal preform die state is obtained by running the 

algorithm. 

6-3-1- Defining the Objective Function 

• As mentioned before, the goal of designing an optimal preform die was stated as designing a die that could 

completely fill the final die with the minimum raw material volume, minimum plastic strain, and minimum 

required force. 

• The parameters: final die filling percentage, maximum plastic strain, and maximum force must be extracted from the 

neural network and then applied to the objective function. Therefore, the variables of the objective function are first 

normalized and then applied to the Genetic Algorithm. Also, due to the normalization of the inputs and outputs of 

the neural network, the weight of all parameters is equal. 

• Each of these four parameters can have a different value for the mold designer. Thus, a different coefficient can be 

considered for each or specific conditions can be applied. In this research, the status of these parameters is 

considered as follows: 

o The final die filling percentage must be between 99.90% and 100%. In this case, the die is completely filled. It is 

worth noting that dies with a filling percentage less than 99.90% are not acceptable at all. For this purpose, a 

condition is placed in the objective function that if this criterion is not met, the other criteria are not checked, and the 

objective function value is considered a large number (value 20). 

o The coefficient for maximum plastic strain is considered to be 2. 

o The coefficient for maximum force is considered to be 3. 

o The coefficient for raw billet width is considered to be 5. The reason for this is the high cost of obtaining the raw 

billet. 

• As noted, the final die filling percentage is the most important criterion, and the maximum plastic strain coefficient 

is the least important criterion. 

• Considering the conditions, the objective function is applied as a computer program in MATLAB software. This 

program will be as follows: 

If area%<99.90% 

 then fitfunc=20 

 else fitfunc=5×width+3×force+2×peeq 

end 

• Since the Genetic Algorithm tool in MATLAB software seeks to find the minimum of the objective function, the 

minimum value obtained for the objective function will be the optimal state of the problem. 

6-3-2- Selecting the Continuous Genetic Algorithm Parameter Values 

• In this stage, the values or states of the algorithm parameters must be determined. These parameters include the 

initial population size, the fitness evaluation method, and the termination conditions of the algorithm. These 

parameters were applied as follows: 

o The initial population size is considered to be 25. 

o The fitness evaluation method is selected as the Rank method. 
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o The Roulette Wheel method is considered for the selection stage. 

o The algorithm termination condition is considered to be 150 generations. 

o The rest of the parameters are set to the software's default state. 

6-4- Optimal Preform Die Found by Continuous Genetic Algorithm 

• Figure (11) shows the diagram of fitness convergence and the best generation obtained. It should be noted that, to 

ensure the results of the Genetic Algorithm and to avoid the results being a local minimum, the Genetic Algorithm 

was run about 20 times to ensure the correctness of its results. 

 

Figure (11) Fitness Convergence and Best Generation 

• Table (3) shows the results of the Finite Element simulation of the optimal preform die compared to the Genetic 

Algorithm results. As observed from the results, the difference between the neural network results and the Abaqus 

results is very small. This means that the neural network is well-designed and can predict the process well. 

Table (4) Comparison of Finite Element Simulation Results with Genetic Algorithm Results 

Results 

Source 

Die Filling 

Percentage 

Maximum 

Plastic Strain 

Maximum 

Force (MN) 

Abaqus 99.96% 8.895 270 

Genetic 

Algorithm 

100.06% 8.887 271 

 

• Figure (12) shows the cross-section of the raw part for the optimal state at the end of the final die application stage. 

 

Figure (12) Cross-section of the Part for the Optimal State at the End of the Final Die Application Stage 
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7. Optimization Results and Validation 

• The Continuous Genetic Algorithm was run 20 times (to ensure it did not get trapped in a local minimum) and 

specified the best generation (optimal state). 

• The optimal preform die was extracted as mathematical parameters (a1, a2, and m) and the optimal raw billet width 

(e.g., 302.5 mm). 

Table (5) Optimization and Validation Results 

Parameter Raw 

Billet Width 

m a

1 

a

2 

Die 

Filling 

Max 

Plastic Strain 

Max 

Force (MN) 

CGA Result 

(Actual) 

302.5 2

05.8 

9

.6 

1

3.9 

10

0.06% 

8.887 271 

FEM Result 

(Optimal) 

302.5 2

05.8 

9

.6 

1

3.9 

99.

96% 

8.895 270 

 

8. Conclusion 

• The design of the preform die in the forging process of complex parts has always been presented as a difficult, time-

consuming, and costly problem. This research successfully presented and applied an intelligent and integrated 

methodology based on the combination of Finite Element Method (FEM) simulation, Artificial Neural 

Networks (ANN), and Continuous Genetic Algorithm (CGA) to overcome these challenges. 

• The results of this research showed that using the capability of the Continuous Genetic Algorithm to produce and 

optimize geometric shapes as a continuous mathematical function provides a powerful tool for defining the preform 

design space. 

• By using accurate and limited data generated by FEM simulations, the Artificial Neural Network was trained as a 

high-speed surrogate model to predict the process performance criteria for any suggested shape. This effectively 

eliminated the time and computational limitations of performing repeated Finite Element simulations in the 

optimization phase. 

• The Continuous Genetic Algorithm, using the ANN model as its fitness function, was able to quickly calculate the 

most optimal preform shape. This optimal shape guaranteed the simultaneous realization of several conflicting 

design goals; including the production of a defect-free part (such as complete filling of the final die), minimizing 

raw material consumption (reducing flash), and reducing the required process force. 

• The comparison of the Finite Element simulation results (Abaqus) for the optimal preform die with the neural 

network results (Genetic Algorithm) showed a very small difference (such as a difference of 1 Mega Newton in 

maximum force). This confirms the successful design of the neural network in accurately predicting the process 

results and the effectiveness of the hybrid method (FEM-ANN-CGA) in finding the optimal state. 

• In the case study section, by applying this method to an H-section part, the optimal preform shape was extracted. 

The final validation by performing the Finite Element simulation for this optimal die showed that the obtained FEM 

results had a high correlation with the predictions of the hybrid model (ANN/CGA). This agreement proved the 

success and effectiveness of the proposed method in the optimal and automated design of forging preform dies, 

marking an important step towards the intelligent and efficient production processes in metal forming industries. 
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