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Abstract

In the forging process, if the shape of the final part is complex, the raw material cannot be transformed into the
shape of the final part in one forging step; therefore, the use of preform molds is essential. An optimal preform mold
is a mold that can meet the design criteria. Design criteria include producing a defect-free part with the least volume
of raw material, the least plastic strain, the least force required to perform the process, and also completely filling
the final mold. In this research, using the ability of the continuous genetic algorithm to generate Cartesian paths, first
several different preform mold shapes are produced using mathematical functions. Then, using finite element
simulation of the process, the optimal mold selection criteria are calculated. From the information obtained from the
simulation, the artificial neural network is trained so that it can predict the results of the simulation process. This
network and design criteria are used for the objective function in the continuous genetic algorithm. Finally, the best
shape of the preform mold is calculated by the continuous genetic algorithm, which is a mathematical function and
is obtained by plotting this function in the Cartesian coordinates of the mold shape. Next, this method is used for a
part with an H-shaped cross-section to examine its efficiency. The optimal preform mold for the part is calculated
and its forging results are extracted by the continuous genetic algorithm. Also, finite element simulation is
performed for the optimal mold to compare its results with the results obtained from the continuous genetic
algorithm. Finally, the success of using this method was proven.

Keywords: Optimal preform mold - Finite element method - Artificial neural networks - Continuous genetic
algorithm

1-Introduction

The forging process holds a prominent position among manufacturing methods due to its ability to produce
components with excellent mechanical properties while minimizing material waste. In forging, the initial material,
often with a relatively simple geometry, undergoes plastic deformation through one or more operations to achieve a
final product with a relatively complex configuration. Forging typically requires relatively expensive tooling.
Consequently, the process is economically attractive either when a large number of parts are produced or when the
required final mechanical properties can only be achieved through a forging process. In closed-die forging, the raw
material is deformed under immense pressure within the die cavity. However, when the final part geometry is
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complex, the desired deformation cannot be accomplished in a single stage. Attempting to produce complex parts in
one step often leads to critical defects such as incomplete die fill, lap/folding formation, improper material flow,
and a sharp increase in forging forces, which consequently reduces die life (1, 2). To overcome these challenges, the
use of one or more preform stages before the final operation is essential. The primary objective of preform die
design is to control material flow in such a way that the initial material is converted into an optimal geometry for the
final stage. An optimal preform must ensure adherence to critical design criteria: the absence of defects in the final
part, minimization of raw material consumption, uniform plastic strain for enhanced mechanical properties,
reduction of the required forging force, and guaranteeing complete final die fill. Traditionally, preform design has
relied heavily on the experience of engineers and the costly trial-and-error method, which significantly increases
both production time and cost (3, 4, 5). In recent decades, with significant advances in computational power, process
simulation using the Finite Element Method (FEM) has become a powerful and standard tool for analyzing and
evaluating metal forming processes. Software packages like DEFORM and ABAQUS enable accurate modeling of
material flow, temperature distribution, strain, and stresses, as well as the prediction of defect occurrences. FEM
effectively replaces physical trial-and-error, offering deep insight into the process mechanics. Nevertheless, the
process of optimizing the preform shape through iterative FEM simulations remains a major computational
challenge due to the time-consuming nature of each simulation run. To accelerate and rationalize the design process,
Artificial Intelligence (AI) methods and Metaheuristic Optimization Algorithms have been introduced. These
novel approaches, particularly the integration of Artificial Neural Networks (ANN) with the Genetic Algorithm
(GA), have shown great potential in overcoming the computational limitations of the standalone FEM approach (6,
7, 8, 9). Artificial Neural Networks (ANNSs) are capable of creating a surrogate model (or metamodel) of the
complex physical process. Using limited and targeted data generated by FEM simulations, the ANN is trained to
rapidly predict the non-linear relationship between preform geometric parameters (input) and performance criteria
(output), such as forging force or die fill, with acceptable accuracy. This approach significantly reduces the need for
computationally expensive, repetitive FEM simulations during the optimization phase (10, 11, 12). The Genetic
Algorithm (GA), an optimization technique inspired by natural evolution, is a highly effective tool for searching
large and complex design spaces. GA is well-suited for solving non-linear, multi-objective optimization
problems, such as preform shape optimization, where the goal is the simultaneous reduction of several performance
metrics (e.g., force, material waste, and strain) (13). One of the most important optimization variants is the
Continuous Genetic Algorithm (CGA). This method offers the capability to optimize continuous problems.
Abuhomour et al. presented a method using CGA to optimize the trajectory of robot arms. This method is applicable
to generating Cartesian paths, or in other words, curves in Cartesian coordinates. In any problem where the
solution takes such a form, this method can be employed to find the optimal solution (14, 15). In some continuous
optimization problems, the solution is a smooth, continuous surface or curve. Examples include finding the optimal
trajectory for robots and the solution to a differential equation. Regarding forging preforms, if the die shape is
modeled as a surface, the solution can be obtained using two-dimensional mathematical functions; however, if the
die shape is modeled as a curve, one-dimensional mathematical functions are used to solve the problem. Figure (1)
shows an example of a curve solution, and Figure (2) shows an example of a surface solution.
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Figure (1) Example of a Curve Response Figure (2) Example of a Surface Response
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Since the component selected for preform die design is axisymmetric (axially symmetric), its preform shape is
represented by a curve. Therefore, the subsequent discussion focuses on the curve-shaped die geometry. One study
introduced a method for executing the steps of the Continuous Genetic Algorithm (CGA) using the Hyperbolic
Tangent and Gaussian mathematical functions. In this approach, the curves for the initial population as well as the
crossover and mutation stages were all generated using these functions. Their method is highly applicable to
problems where there is no prior knowledge regarding the shape of the solution curve (16). Several examples of
mathematical functions that can be utilized in this context are presented in Figure (2).
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y = tanh (ax) y = a X sin (7rx)

Figure (3) Two examples of mathematical functions

By modifying the parameters of these functions, various distinct curves are produced. For preform die design in
axisymmetric components, estimating the preform shape is simpler because the final die shape is known. Forging
experience indicates that the preform shape bears a strong resemblance to the final die; thus, its estimation is not
unduly challenging. It suffices to use functions that generate a shape close to the final die to produce the preform
curve. The curve shape changes as the parameters of these functions are varied. Furthermore, a combination of
several functions can be used to achieve the desired shape. By varying the parameters of these functions, numerous
states for the curve shape are generated, and the role of the Continuous Genetic Algorithm (CGA) here is to find
the optimal set of parameters for the utilized mathematical functions to yield the optimal curve shape. Recent
research has demonstrated that the integration of Intelligent Techniques and Simulation is the key to achieving
high-performance optimal designs. For instance, multiple studies have successfully employed the FEM-ANN-GA
combination for optimizing the forging process. In an approach similar to the current research, the capability of the
Continuous Genetic Algorithm (CGA) to generate Cartesian paths and model preform shapes using
mathematical functions has been proven (14). This method allows the entire preform shape to be optimized as a
continuous function, instead of optimizing limited parameters, thereby offering greater flexibility and accuracy in
designing the optimal geometry. In this integrated approach, the predictions from the Artificial Neural Network
(ANN)—trained on FEM data—are utilized as the Objective Function for the Continuous Genetic Algorithm. This
research presents a comprehensive and integrated methodology for the optimal preform die shape design in the
forging process. This approach is founded on leveraging the complementary strengths of Finite Element Method
(FEM) for generating precise data, Artificial Neural Networks (ANN) for creating a rapid prediction model
(Surrogate Model), and the Continuous Genetic Algorithm (CGA) for searching and determining the most
optimal preform geometry (modeled as a mathematical function). Finally, the effectiveness of this advanced
approach will be investigated and validated using a key industrial component with an H-shaped cross-section,
where preform design is challenging due to the complex geometry (6). The comparison between the final FEM
simulation results of the optimal preform and the predictions from the hybrid model will validate the efficacy of
this intelligent methodology in enhancing product quality and reducing production costs in the forging industry.
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2. Research Methodology

The research methodology employed in this study is an integrated and intelligent methodology based on the
synergy of three powerful tools: the Finite Element Method (FEM), Artificial Neural Networks (ANN), and the
Continuous Genetic Algorithm (CGA). The main goal is to convert the preform design problem into a
mathematical optimization problem and solve it using an intelligent approach. This process is executed in several
primary, structured stages:

1. Definition of Criteria and Design Space

Design Criteria (Objective Function): First, the required technical criteria for selecting the optimal preform die are
precisely defined. These criteria include minimizing the volume of raw material (flash reduction), minimizing non-
uniform plastic strain, minimizing the process force requirement, and ensuring complete final die cavity fill and
the absence of defects like folding. These criteria are ultimately incorporated into the Fitness Function of the
Genetic Algorithm.

Preform Geometry Modeling: To establish the design space, the capability of the Continuous Genetic Algorithm
(CGA) for Cartesian path generation is utilized. In this phase, the preform die shape is modeled as a continuous
mathematical function. The parameters of this function (e.g., polynomial coefficients or Bezier curve parameters)
are considered the design variables (genes) for the Genetic Algorithm. Initially, several different shapes are
randomly generated using the mathematical functions.

2. Data Generation and Finite Element Simulation (FEM)

Process Simulation: The preform shapes generated in the previous step are analyzed using FEM-based simulation
software (such as DEFORM or ABAQUS). The forging process (e.g., hot or cold forging) is simulated for each
preform geometry.

Result Extraction: From the results of each simulation, the quantitative data required for evaluating the design
criteria (such as maximum forging force, generated flash volume, and effective strain distribution) are extracted and
collected. This dataset (including the mathematical parameters of the preform shape as inputs and the FEM results as
outputs) is used to train the surrogate model.

3. Development of the Surrogate Model with Artificial Neural Networks (ANN)

Neural Network Training: The data obtained from the FEM simulations is used to train an Artificial Neural
Network. The goal of ANN training is to create a Surrogate Model that can predict the design criteria (FEM
results) with very high speed and acceptable accuracy, given the mathematical parameters of the preform shape.
This effectively eliminates the need for time-consuming FEM simulation in every iteration of the optimization
process.

ANN Validation: The accuracy of the trained neural network is assessed using a test dataset that was not used
during the training process, ensuring the model possesses adequate generalization capability.

4. Preform Shape Optimization with Continuous Genetic Algorithm (CGA)

Model Integration: The trained ANN model replaces the FEM simulation process and is incorporated as the
Objective Function (or a component of the fitness function) within the Continuous Genetic Algorithm.

Optimization Execution: The CGA is executed with the aim of optimizing the fitness function. By searching the
space of mathematical parameters, the algorithm finds a set of parameters that results in a preform simultaneously
satisfying the defined criteria (minimum force, minimum waste, etc.).
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Optimal Shape Calculation: Finally, the best individual (the optimal set of mathematical parameters) determined
by the CGA is selected as the mathematical function for the optimal preform die shape. The optimal geometric
shape is obtained by plotting this function in Cartesian coordinates.

5. Case Study and Validation

Practical Application (H-Shaped Case Study): The developed methodology is applied to a specific industrial
component with an H-shaped cross-section. The optimal preform die shape for this part is calculated by the CGA.

Final Validation: To confirm the accuracy and effectiveness of the hybrid method (FEM-ANN-CGA), a final
FEM simulation is performed for the determined optimal preform die. The results of this FEM simulation (including
forging force, strain distribution, and die fill status) are directly compared with the results predicted by the
Continuous Genetic Algorithm (using the ANN model). This comparison proves the success of the proposed method
in achieving the optimization objective and validating the accuracy of the intelligent models.

3. Optimal Preform Die Design Using Neural Networks and Continuous Genetic Algorithm

To obtain the preform die shape for forging components, mathematical functions that are capable of generating the
die geometry can be utilized. The optimal shape is subsequently determined using the Continuous Genetic
Algorithm's (CGA) ability to optimize continuous problems.

Using the CGA in optimization necessitates repeated analyses of the process (e.g., 1000 times) under different
conditions to find the best preform shape. Given that Finite Element analysis is a time-consuming process,
repeated iterations would require an excessive amount of time. To reduce the time required to find the optimal
preform die, the use of Artificial Neural Networks (ANNS) is rational. Thus, instead of running the FEM analysis
for the process repeatedly, a network is designed and trained to provide the necessary results promptly.

Figure (2) shows the component under study with its dimensions . The dimensions are in millimeters (mm). For
modeling this component in ABAQUS, one-quarter of the total part is considered due to symmetry, as shown in
Figure (4) .
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Figure (4) Geometry of H-shaped piece

Given the component's geometry, its final die is modeled as a curve, as depicted in Figure (4) . The preform die for
this component will also be curve-shaped, similar to the final die. Naturally, a narrow flash gutter will be included
in the final die to improve material flow and allow excess material to be expelled as flash.
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Figure (5) Required Component Geometry for Figure (6) Final Die Shape
Abaqus Modeling

Calculation of Raw Material Volume

To calculate the volume of the raw billet, it is essential to consider that during the forging process, a portion of the
component's surface oxidizes, and flash is formed. Therefore, if the raw material volume is considered equal to the
final part volume, cavities will be observed after the process (8).

Various rules and formulas exist for calculating the initial raw material volume, mostly based on the oxidation rate
and the amount of flash generated. Since none of these formulas offer sufficient accuracy, the volume of the initial
raw material in this study was determined by trial-and-error. The raw billet for this die is considered a cylinder
with a height of 0.9 meters and a radius of 0.3 meters. Since the raw billet is also axisymmetric, only one-quarter
of the component is used for modeling, which is represented as a rectangle with a height of 450 mm and a width of
300 mm.

3-1. Material Characteristics and Preform Die Geometry Design

This section of the research addresses three main axes: determining the physical properties of the raw material at
the process temperature, defining the number of preform stages required for the component under study, and the
mathematical modeling of the preform die geometry for the optimization process.

1. Raw Material Physical Properties and Process Conditions

The raw material selected for this research is AL2014 Aluminum Alloy. Since the forging process is performed at a
high temperature, specifically 4000C, the material's mechanical properties must be accounted for at this temperature.

Feature \Y
alue
Material Type A
L2014
Process 40
Temperature 00C
Initial Yield 23
Stress (os) .7 MPa
Poisson's Ratio 0.
33
Elastic 27
Modulus .9 GPa
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Plastic Stress-Strain Relationship:

The constitutive relationship governing the material's plastic behavior is expressed as a power law function of
plastic strain (¢):

6=6s5+Cem

Where:

C (Strength Coefficient/Flow Constant) is 1.02x108 MPa.
m (Strain Hardening Exponent) is 0.11.

This relationship is considered for modeling the material behavior in the Finite Element Method (FEM)
simulation.

2. Determining the Number of Preform Stages

For forging processes with complex final part geometries, defining the optimal number of preform stages is crucial
to prevent defects. In this research, for the studied component with an H-shaped cross-section, the method
proposed by Thomas, based on the height-to-width ratio of the forged part, is employed.

Given the dimensions of the H-shaped component used in this study, the height-to-width ratio falls within the range
of 2 to 3. Consequently, only one preform stage is required. Thus, the entire forging process will consist of two
stages: the preform die stage and the final die stage.

3. Mathematical Modeling and Preform Die Design Parameters
A) Mathematical Function for Preform Shape Generation

To model the preform die shape and introduce geometric variability for the optimization process, the preform
geometry is estimated as a continuous mathematical function. This curve shape is formed by the combination of
two Hyperbolic Tangent functions that connect at point m.

The general form of the function models the preform geometry as a function of the width coordinate (x) and the
height coordinate (y). This function contains the coefficients al, a2, and the connection point m, which are used as
the design variables (primary input parameters) for the Continuous Genetic Algorithm (CGA).

B) Preform Dimensions and Function Mapping

Since only one preform stage is required, the preform die shape is considered an intermediate state between the
initial billet (symmetric rectangle) and the final part (H-shape).

Preform Width: The average width between the initial billet (300 mm) and the final part (500 mm), which is
400 mm, is selected.

Preform Height: Half of the height change of the final part (150 mm), which is 75 mm, is considered.

Ultimately, the mathematical functions used are mapped to be within the width range [0,400] and the height range
[0,75], forming the final relationship (4-4) of the optimization problem. Varying the parameters al, a2, and m
creates a wide variety of curve shapes (similar to Figure (4-5) in the original text) that cover the search space of the
Genetic Algorithm.

C) Problem Input and Output Parameters

The design criteria for selecting the optimal die include: die fill percentage, required process force, plastic strain
magnitude, and raw material volume. These criteria are divided into two categories: input parameters (those
modified by the designer) and output parameters (process results that must be optimized):
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Input Parameters:

Raw Billet Width (Discrete Variable): To regulate the raw material volume, the billet width is selected as 20
discrete, predefined values between 300 mm and 305 mm (e.g., 300, 300.25, 300.5, etc.), instead of a continuous
value. The Genetic Algorithm must find the optimal state among these 20 discrete values.

Preform Shape Parameters (al,a2,m): These are the primary continuous variables for generating the die's
geometry.

Output Parameters (Criteria):

Maximum required force (to reduce forging costs).
Component plastic strain magnitude.

Die fill percentage.

Raw material volume.

Method of Drawing the Shape in Software (Abaqus)

For simulation in Abaqus software, the continuous preform shape curve is modeled using the coordinates of 21
points (resulting from dividing the width into 20 segments). To eliminate sharp corners at the connection points of
the segments, the spline command is used. Due to the two-dimensional nature of the shape and software limitations,
the 21 points are divided into 7 sections (each containing 3 points), and then the curve is smoothed using the spline
command and ensuring tangency at the connection points, achieving an acceptable geometry for forging dies.

4. Problem Solving

In this section, the command to solve the problem is executed. A printout of the inputs and applied boundary
conditions can also be generated before the operation begins. Here, the default settings of the software are used for
problem solving, and the solution command is issued.

4-1. Displaying Problem Solving Results

This section presents the results obtained from solving the problem. The software provides various options for this
purpose, allowing different results to be viewed visually or extracted numerically. Tools for plotting various graphs
as needed are also available. In this research, three output parameters must be obtained from the simulation; the
method of extracting them is presented below.

The first parameter is Maximum Plastic Strain. Plastic strain is represented as PEEQ in Abaqus software. Figure
(7) shows the plastic strain contour for this model, with a maximum value of 10.316
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Figure (7) Plastic Strain Contour for the Simulated Model

The second parameter that must be obtained from the process simulation is the Die Fill Percentage. As observed in
Figure (5), due to the small volume of material or an unsuitable preform die, as well as the loss of some material as
flash, the final die is not completely filled. It should be noted that a tool exists in Abaqus to calculate the volume of
a closed part. However, since the component is modeled here as axisymmetric, it has symmetry in two directions,
which results in the part being "open" in those two directions, making it impossible to calculate its volume using the
built-in Abaqus tool.

In this research, the analysis tool in Photoshop (1) is used to determine the die fill percentage. Initially, the results
from Abaqus software are saved in PNG format with a resolution of 1056x453. Then, in Photoshop, the flash area
is first removed, and the number of pixels of the final part is calculated using the analysis tool. By comparing this
pixel count with the pixel count of the completely filled final die, the die fill percentage is obtained. Using this
method, the die fill percentage for this model was obtained as 99.36%.

The third parameter obtained from the simulation is the Maximum Force Required for Forging. As observed in
the figure [referencing Figure 5-9 in the original thesis structure], the maximum force can be determined by plotting
the force applied to the final die versus time. The maximum required force for this model is
226 MegaNewtons (MN).

[x1.E9]

0.00

ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

Force

—— RF:RFZ PLI: DIE-1MN:1_1
XMIN 0.00E+00
KMAX 200.E-D3
YMIN -226.E+06
YMAX 0.00E+00

Figure (8) Force vs. Time Diagram for the Final Die
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5. Simulation, Intelligent Modeling, and Optimization of Preform Die
5-1- Finite Element Method (FEM) Simulation and Result Extraction

Three key output parameters were extracted from the simulations to evaluate the performance of the preform dies:

Parameter Description Measurement
Method & Example
Maximum Indicates the plastic deformation in the part. Its wvalue is read
Plastic Strain directly from the plastic
(PEEQ) strain contour in Abaqus
software (e.g., in one case
1.316x10—x).
Die Filling Due to axisymmetric modeling and the part being
Percentage open in Abaqus software, calculating the part volume with

internal software tools is not possible. To resolve this, a
creative method was used involving the analysis tool in
Photoshop software. The filling percentage is calculated by
comparing the number of pixels in the filled area of the final
part with the number of pixels in the completely filled die
(after flash area removal) (e.g., 99.36%).

Maximum This parameter is obtained by plotting the force versus
Forging Force | time diagram (like Figure 5-9) and represents the maximum
Required force consumed in the process (e.g., 226 Mega Newtons

(MN)).

Finally, FEM simulation was performed for 100 cases (a combination of shape parameters and raw billet width), and
the necessary results were extracted to train the neural network.

5-2- Optimization with Artificial Neural Networks and Continuous Genetic Algorithm (ANN & CGA)
1. Design and Training of Artificial Neural Network (ANN)

The neural network is designed as a high-speed surrogate model for predicting forging results (FEM outputs) and
is trained using MATLAB software.

In this research, a multi-criteria objective function is defined in MATLAB so that its minimization by the Genetic
Algorithm leads to finding the optimal die.

6. Finding the Optimal Preform Die State by Neural Network and Continuous Genetic Algorithm
6-1- Designing and Training Several Neural Networks and Selecting the Appropriate Neural Network

Several neural networks with different topologies are designed. These networks are then trained, and the optimal
network is selected based on performance indicators to continue the research process.

Of course, to train the network, the data must first be normalized.

1176




Eksplorium p-ISSN 0854-1418

Volume 46 No. 2, September 2025: 1167-1182 e-ISSN 2503-426X

6-3-1- Data Normalization

Because the range of variation in the data is small, normalization is used to put the range of all data at one level,
which increases the accuracy and reduces the error of the neural network. Data normalization means scaling them
within a specified range.

Among the commands used in MATLAB software to normalize neural network data is the mapminmax function.
This function scales the data within the desired range.

In this research, this function is used to scale the problem's input and output data in the range [0, 1]. Note that
subsequently, whenever a new input needs to be entered, that input must be scaled in the desired range, and
whenever a new output is needed, the output is returned to its original value using the inverse command of this
function.

6-2- Selecting the Optimal Network

Table (2) shows the results of running the network for several different topologies. As is clear, the network with
layers 3, 40, 20 (i.e., the network with two hidden layers of 40 and 20 neurons) has the best MSE and correlation
coefficient.

Table (2) Results from running networks with different topologies

Topology MSE Correl Minimu Maximu
ow ation m Error m Error
Coefficient
3,12,5 0.0089 0.87 -0.33 0.47
3,15, 12 0.0023 0.97 -0.14 0.35
3,21, 18 0.00022 0.94 -0.21 0.10
3,40, 20 0.000005 0.99 -0.03 0.05

Figure (9) shows the correlation coefficient graph for the training and testing state of the network, and Figure (10)
shows the network performance.
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Figure (9) Correlation Coefficient Diagram for Training and Testing Figure (10) Performance
State of 3, 40, 20 Network Diagram of 3, 40, 20 Network

6-3- Using Continuous Genetic Algorithm to Find the Optimal Preform Die State
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In this section, an objective function is first defined for the Genetic Algorithm based on the design criteria. Then
the Genetic Algorithm parameters are selected, and the optimal preform die state is obtained by running the
algorithm.

6-3-1- Defining the Objective Function

As mentioned before, the goal of designing an optimal preform die was stated as designing a die that could
completely fill the final die with the minimum raw material volume, minimum plastic strain, and minimum
required force.

The parameters: final die filling percentage, maximum plastic strain, and maximum force must be extracted from the
neural network and then applied to the objective function. Therefore, the variables of the objective function are first
normalized and then applied to the Genetic Algorithm. Also, due to the normalization of the inputs and outputs of
the neural network, the weight of all parameters is equal.

Each of these four parameters can have a different value for the mold designer. Thus, a different coefficient can be
considered for each or specific conditions can be applied. In this research, the status of these parameters is
considered as follows:

The final die filling percentage must be between 99.90% and 100%. In this case, the die is completely filled. It is
worth noting that dies with a filling percentage less than 99.90% are not acceptable at all. For this purpose, a
condition is placed in the objective function that if this criterion is not met, the other criteria are not checked, and the
objective function value is considered a large number (value 20).

The coefficient for maximum plastic strain is considered to be 2.
The coefficient for maximum force is considered to be 3.

The coefficient for raw billet width is considered to be 5. The reason for this is the high cost of obtaining the raw
billet.

As noted, the final die filling percentage is the most important criterion, and the maximum plastic strain coefficient
is the least important criterion.

Considering the conditions, the objective function is applied as a computer program in MATLAB software. This
program will be as follows:

If area%<99.90%

then fitfunc=20

else fitfunc=5xwidth+3xforce+2xpeeq
end

Since the Genetic Algorithm tool in MATLAB software seeks to find the minimum of the objective function, the
minimum value obtained for the objective function will be the optimal state of the problem.

6-3-2- Selecting the Continuous Genetic Algorithm Parameter Values

In this stage, the values or states of the algorithm parameters must be determined. These parameters include the
initial population size, the fitness evaluation method, and the termination conditions of the algorithm. These
parameters were applied as follows:

The initial population size is considered to be 25.

The fitness evaluation method is selected as the Rank method.
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o The Roulette Wheel method is considered for the selection stage.
o The algorithm termination condition is considered to be 150 generations.
o The rest of the parameters are set to the software's default state.

6-4- Optimal Preform Die Found by Continuous Genetic Algorithm

e Figure (11) shows the diagram of fitness convergence and the best generation obtained. It should be noted that, to
ensure the results of the Genetic Algorithm and to avoid the results being a local minimum, the Genetic Algorithm
was run about 20 times to ensure the correctness of its results.

Current Best Indhidua 18
T

Current best individual

2 3
Number of variables (4) 4

LSt 2 3

-
o
@

Figure (11) Fitness Convergence and Best Generation

e Table (3) shows the results of the Finite Element simulation of the optimal preform die compared to the Genetic
Algorithm results. As observed from the results, the difference between the neural network results and the Abaqus
results is very small. This means that the neural network is well-designed and can predict the process well.

Table (4) Comparison of Finite Element Simulation Results with Genetic Algorithm Results

Results Die Filling Maximum Maximum
Source Percentage Plastic Strain Force (MN)

Abaqus 99.96% 8.895 270

Genetic 100.06% 8.887 271
Algorithm

e  Figure (12) shows the cross-section of the raw part for the optimal state at the end of the final die application stage.
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Figure (12) Cross-section of the Part for the Optimal State at the End of the Final Die Application Stage
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7. Optimization Results and Validation

The Continuous Genetic Algorithm was run 20 times (to ensure it did not get trapped in a local minimum) and
specified the best generation (optimal state).

The optimal preform die was extracted as mathematical parameters (al, a2, and m) and the optimal raw billet width
(e.g., 302.5 mm).

Table (5) Optimization and Validation Results

Parameter Raw Die Max Max
Billet Width 1 2 Filling Plastic Strain Force (MN)
CGA Result 302.5 10 8.887 271
(Actual) 05.8 | .6 |39 |0.06%
FEM  Result 302.5 99. 8.895 270
(Optimal) 058 | .6 |39 |9%6%

8. Conclusion

The design of the preform die in the forging process of complex parts has always been presented as a difficult, time-
consuming, and costly problem. This research successfully presented and applied an intelligent and integrated
methodology based on the combination of Finite Element Method (FEM) simulation, Artificial Neural
Networks (ANN), and Continuous Genetic Algorithm (CGA) to overcome these challenges.

The results of this research showed that using the capability of the Continuous Genetic Algorithm to produce and
optimize geometric shapes as a continuous mathematical function provides a powerful tool for defining the preform
design space.

By using accurate and limited data generated by FEM simulations, the Artificial Neural Network was trained as a
high-speed surrogate model to predict the process performance criteria for any suggested shape. This effectively
eliminated the time and computational limitations of performing repeated Finite Element simulations in the
optimization phase.

The Continuous Genetic Algorithm, using the ANN model as its fitness function, was able to quickly calculate the
most optimal preform shape. This optimal shape guaranteed the simultaneous realization of several conflicting
design goals; including the production of a defect-free part (such as complete filling of the final die), minimizing
raw material consumption (reducing flash), and reducing the required process force.

The comparison of the Finite Element simulation results (Abaqus) for the optimal preform die with the neural
network results (Genetic Algorithm) showed a very small difference (such as a difference of 1 Mega Newton in
maximum force). This confirms the successful design of the neural network in accurately predicting the process
results and the effectiveness of the hybrid method (FEM-ANN-CGA) in finding the optimal state.

In the case study section, by applying this method to an H-section part, the optimal preform shape was extracted.
The final validation by performing the Finite Element simulation for this optimal die showed that the obtained FEM
results had a high correlation with the predictions of the hybrid model (ANN/CGA). This agreement proved the
success and effectiveness of the proposed method in the optimal and automated design of forging preform dies,
marking an important step towards the intelligent and efficient production processes in metal forming industries.
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