Eksplorium p-ISSN 0854-1418

e-ISSN 2503-426X

Assessing the Role of Crisis Communication in Power Outage Response During Natural Disasters, Enhancing System Resilience through Renewable Integration

Dany Tasán Cruz¹, Gonzalo Oviedo ¹, Victor Molina¹, Andea Orna¹, Josselyn García¹, Pedro Carretero¹

¹Universidad Nacional de Chimborazo, Facultad de Ingeniería, Carrera de Arquitectura, Riobamba,060104, Ecuador

*E-mail: correspondence email: danymarcelo.tasan.cruz@alumnos.upm.es

Article Received: 12 May 2025, Revised: 10 June 2025, Accepted: 22 June 2025

Abstract: Effectively managing power outages during natural disasters is essential to protect the well-being and safety of impacted populations. This research investigates how crisis communication strategies can reduce the adverse consequences of electrical service disruptions, while also examining how renewable energy sources contribute to enhancing grid resilience. Adopting a mixed-methods approach, the study analyzes recent case studies and empirical evidence from high-risk regions affected by power failures. The findings underscore the critical role of timely and coordinated communication, along with the deployment of renewable technologies, in reinforcing the robustness of energy infrastructure. The article concludes with actionable recommendations aimed at strengthening emergency preparedness and energy response strategies.

Keywords: energy, management, renewable, crisis, communication

Introduction

Natural disasters. This approach makes it possible to analyse both empirical data and the socio-economic contexts in which power outages occur.

Research Design

The mixed research design is based on:

Qualitative analysis: It allows us to understand the experiences and perceptions of key actors involved in the management of energy crises, such as government authorities, energy companies and affected communities.

Quantitative analysis: It focuses on the analysis of statistical data, such as electricity recovery times, economic impact of interruptions and penetration of renewable energies in the regions studied.

Data Collection Methods

Two main methods were used:

Case studies: Five recent cases of natural disasters that occurred between 2018 and 2023 in Latin America and the Caribbean were selected. These cases include analyses of hurricanes, earthquakes, and floods that affected traditional and renewable electricity systems [12] (table 3).

Eksplorium p-ISSN 0854-1418

Table 3: Selected Case Studies

Natural disaster	Location	Date	Blackout Duration	Integrated Renewable Energy
Hurricane Maria	Puerto Rico	2018	90 days	No
Earthquake	Mexico	2020	14 days	Partial
Floods	Brazil	2021	7 days	Yes
Hurricane Iota	Nicaragua	2021	10 days	Partial
Tropical Storm	Colombia	2023	5 days	Yes

Structured surveys: Surveys were conducted on 200 participants, including:

- Officials of energy companies.
- Members of affected communities.
- Experts in crisis management and renewable energies.

The surveys measured perceptions about the effectiveness of crisis communication, the usefulness of renewables, and energy recovery time.

Analysis Techniques

Qualitative analysis: Data from the case studies were coded and analyzed using the thematic analysis technique, identifying patterns related to communication effectiveness and energy resilience [24].

Quantitative analysis: The data obtained from the surveys and official statistics were processed using SPSS statistical software. Metrics analyzed include:

- Average energy recovery time.
- Economic cost of interruptions.
- Percentage of renewable energy penetration in the affected regions.

Table 4: Summary of Statistical Results

		Standard	
Variable	Average	deviation	Rank
Recovery time (days)	12	4.2	5-90
Economic cost (million USD)	45	15.8	10-120
Penetration of renewables (%)	35	20.5	0-80

Limitations

The study has the following limitations:

- Access to data: Some regions did not provide comprehensive information on their energy infrastructures and crisis communication strategies.
- Generalization: Although the cases analyzed are representative, the results may not be applicable to all regions due to differences in policies and available resources.

Validity and Reliability

To ensure the validity and reliability of the results:

• Qualitative and quantitative information were triangulated.

- Pilot tests of the surveys were carried out to ensure the clarity and relevance of the questions [24]
- Secondary data were obtained exclusively from reliable and peer-reviewed sources, such as international bodies and recent academic publications[1], [4].

Results

The results of the study reflect a significant relationship between the integration of renewable energies, the effectiveness of crisis communication and the resilience of electricity systems during natural disasters. Three key areas were identified: the effectiveness of communication, the impact of renewables on resilience, and the combined benefits of both strategies.

Effectiveness of Crisis Communication

Analysis of surveys and case studies shows that regions with well-defined communication strategies experienced shorter recovery times and lower levels of social disorganization. 85% of respondents in regions with structured communication plans stated that the information provided helped them make appropriate decisions during interruptions [1] [8], [9], [11], [25]

Region	Access to	Positive	Trust in
	Information (%)	n Perceptio	n Authorities (%)
Puerto Rico	65	50	45
Brazil	85	70	60
Nicaragua	n 75	65	55
Mexico	90	80	75
Colombia	95	85	80

Table 5 access to information.

The data suggests that timely and clear communication reduces the level of uncertainty and fosters trust in local authorities, which is crucial for an efficient recovery.

Impact of Renewable Energy on Energy Resilience

Electricity systems that integrate renewable energies proved to be significantly more resilient in the face of natural disasters. Compared to traditional systems, regions that used renewable sources and microgrids achieved a 40% reduction in average electricity payback time [17] [5], [23].

Table 6: Comparison of Resilience between Electrical Systems

System Type	Average Recovery	Recovery	Maintained Energy
	Time (days)	Cost (USD)	Coverage (%)
Traditional	12	50,000,000	55
Renewable	7	30,000,000	85

These results highlight the value of renewable technologies not only to maintain essential services during emergencies, but also to reduce long-term economic costs.

Combined Benefits: Communication and Renewable Energy

The combination of effective communication strategies with renewable energy-based infrastructures produced the most positive results in terms of resilience. The cases analysed demonstrate that this synergy facilitates a more coordinated and faster response, while minimising economic and social impacts.

Cost and Benefit Analysis

Economic analysis showed that initial investments in renewable infrastructure and robust communication systems have a significant return in terms of savings during natural disasters. For example, regions with renewable systems and integrated communication strategies reported an average 25% reduction in costs related to prolonged outages [1] (table 7)

Table 7 relation between regions with renewable systems and integrated systems.

Indicator	Region with	Region with	
	Traditional Systems	Renewable Systems	
Initial Cost (USD)	20,000,000	35,000,000	
Annual Savings on	5,000,000	10,000,000	
Repossessions (USD)	3,000,000	10,000,000	
Return on Investment	4	3	
vears)			

Community Perception

An additional aspect highlighted was the perception of the communities about the implementation of renewable energies. According to survey data, 70% of respondents believe that renewable energies not only contribute to environmental sustainability, but also generate a sense of energy security in the face of future emergencies [8] (table 8)

Table 8: Community views on renewable energy

Evaluated Aspect	Percentage Positive	of
Environmental Sustainability	85	
Energy Security	70	
Cost Reduction	65	
Improving Community Resilience	75	

Conclusions

The results of this study underscore the critical importance of combining effective crisis communication strategies with renewable-based energy systems to improve electrical resilience during natural disasters. It can be concluded that these two tools, when implemented together, not only minimize the impacts of power outages, but also strengthen community trust, reduce costs associated with recovery, and promote sustainability.

Crisis communication as a fundamental pillar

Well-structured and timely crisis communication is positioned as an essential component for effective emergency management. The data analyzed show that regions with more robust communication protocols achieved faster recovery and a more coordinated response during disasters [12]. In addition, trust in crisis management institutions increases significantly when communities perceive the information provided to be clear,

e-ISSN 2503-426X

accurate, and accessible. This underscores the need to invest in technologies and platforms that enable real-time communication, especially in disaster-prone areas [8].

Renewable Energy and Energy Resilience

The integration of renewable energies, such as solar and wind, into electricity systems proved to be an effective strategy to mitigate the effects of natural disasters. The ability to operate in a decentralized and autonomous manner reduces reliance on vulnerable centralized networks, improving service continuity during emergencies [17]. This finding is especially relevant in a global context where extreme weather events are becoming more frequent due to climate change [4].

Investments in renewable technologies not only have a positive impact in terms of environmental sustainability, but also represent long-term economic savings. Although the initial costs can be high, the return on investment is significant thanks to the reduction in the time and cost of recovery after power outages [1].

Combined Benefits and Practical Recommendations

The synergy between effective communication and renewable energy proved to be the most effective combination for addressing energy challenges during natural disasters. This integrated approach allows:

- **Reduced recovery time**: Hybrid and renewable systems, supported by proper communication, reduce the average time to restore electric services by 50%.
- **Better resource management**: Timely information facilitates the efficient allocation of resources, reducing chaos and improving the effectiveness of emergency operations [1]

Recommendations

- Strengthen communication infrastructure: Implement digital platforms and early warning systems that are accessible even in rural and remote areas.
- **Promote the adoption of renewable energies**: Encourage investment in renewable technologies, with special emphasis on microgrids and energy storage.
- **Empowering communities**: Conduct awareness campaigns so that communities are prepared and understand the importance of blended strategies.
- **Develop integrated policies**: Design public policies that articulate the management of crisis communication and the transition to sustainable energy systems.

Final Conclusion

The combination of effective communication strategies and renewable energy-based technologies is a transformative approach to natural disaster management. This study not only reinforces the evidence on the importance of these tools but also offers a basis for designing more resilient and sustainable interventions in the future. In a world increasingly affected by climate change, these strategies are emerging as essential to ensure the well-being and safety of vulnerable communities.

References

- [1] C. Nicolas *et al.*, "Stronger Power. Improving Power Sector Resilience to Natural Hazards LIFELINES: The Resilient Infrastructure Opportunity," 2019. [Online]. Available: www.worldbank.org
- [2] FEMA, "National Disaster Recovery Framework Strengthening Disaster Recovery for the Nation," 2011.

Eksplorium

e-ISSN 2503-426X

[3] H. Rodríguez, J. Trainor, and E. L. Quarantelli, "Rising to the Challenges of a Catastrophe: The Emergent and Prosocial Behavior following Hurricane Katrina," *Ann Am Acad Pol Soc Sci*, vol. 604, no. 1, pp. 82–101, 2006, doi: 10.1177/0002716205284677.

- [4] IEA, "Energy Transitions Require Innovation in Power System Planning Analysis IEA," Jan. 2022. Accessed: Jul. 12, 2025. [Online]. Available: https://www.iea.org/articles/energy-transitions-require-innovation-in-power-system-planning
- [5] A. Kumar, Y. R. Sood, and A. Maheshwari, "Power Systems Resilience Enhancement through Renewable Energy Integration: Insights and Future Directions," 2024 IEEE 4th International Conference in Power Engineering Applications: Powering the Future: Innovations for Sustainable Development, ICPEA 2024, pp. 140–145, 2024, doi: 10.1109/ICPEA60617.2024.10498721.
- [6] D. A. Farber, "Response and Recovery after Maria: Lessons for Disaster Law and Policy," *SSRN Electronic Journal*, May 2018, doi: 10.2139/SSRN.3174466.
- [7] E. Feitelson *et al.*, "Learning from Others' Disasters? A Comparative Study of SARS/MERS and COVID-19 Responses in Five Polities," *International Journal of Disaster Risk Reduction*, vol. 74, p. 102913, May 2022, doi: 10.1016/J.IJDRR.2022.102913.
- [8] B. Reynolds and M. W. Seeger, "Crisis and emergency risk communication as an integrative model," *J Health Commun*, vol. 10, no. 1, pp. 43–55, Jan. 2005, doi: 10.1080/10810730590904571.
- [9] R. LHeath and Hd. OHair, HANDBOOK OF RISK AND CRISIS COMMUNICATION. 2009.
- [10] A. Carmeli and J. Schaubroeck, "Organisational Crisis-Preparedness: The Importance of Learning from Failures," *Long Range Plann*, vol. 41, no. 2, pp. 177–196, Apr. 2008, doi: 10.1016/J.LRP.2008.01.001.
- [11] W. T. Coombs, *Ongoing Crisis Communication: Planning, Managing, and Responding*, vol. 53, no. 2. Institute of Electrical and Electronics Engineers (IEEE), 2014. doi: 10.1109/TPC.2010.2046099.
- [12] C. Noboa-Ramos, Y. Almodóvar-Díaz, E. Fernández-Repollet, and K. Joshipura, "Healthcare and Social Organizations' Disaster Preparedness, Response, and Recovery Experience: Lessons Learned From Hurricanes Irma and Maria," *Disaster Med Public Health Prep*, vol. 17, no. 11, p. e306, Feb. 2023, doi: 10.1017/DMP.2022.272.
- [13] "Hurricanes Irma and Maria: Impact and Aftermath | RAND." Accessed: Jul. 12, 2025. [Online]. Available: https://www.rand.org/hsrd/hsoac/projects/puerto-rico-recovery/hurricanes-irma-and-maria.html
- [14] K. J. Joshipura *et al.*, "Preparedness, hurricanes Irma and Maria, and impact on health in Puerto Rico," *International Journal of Disaster Risk Reduction*, vol. 67, p. 102657, Jan. 2022, doi: 10.1016/J.IJDRR.2021.102657.
- [15] FEMA, "FEMA Strategic Plan," 2008.
- [16] WHO, "A strategic framework for emergency preparedness," *Licence: CC BY-NC-SA 3.0 IGO.*, pp. 1–29, 2017, Accessed: Jul. 12, 2025. [Online]. Available: https://www.who.int/publications/i/item/a-strategic-framework-for-emergency-preparedness
- [17] M. I. Khan and S. G. Al-Ghamdi, "Enhancing Energy System Resilience: Navigating Climate Change and Security Challenges," *Sustainable Cities in a Changing Climate: Enhancing Urban Resilience*, pp. 227–250, Jan. 2023, doi: 10.1002/9781394201532.CH14.
- [18] N. H. Center, "National Hurricane Center".
- [19] C. Wang, "Bracing For Hurricanes: A Qualitative Analysis of the Extent and Level of Preparedness Among Older Adults," *Gerontologist*, vol. 58, no. 1, pp. 57–67, Jan. 2018, doi: 10.1093/GERONT/GNX187.
- [20] B. W. Mayer, J. Moss, and K. Dale, "Disaster and Preparedness: Lessons from Hurricane Rita," *Journal of Contingencies and Crisis Management*, vol. 16, no. 1, pp. 14–23, Mar. 2008, doi: 10.1111/J.1468-5973.2008.00531.X.

Volume 46 No. 2, June 2025: 1070–1076

Eksplorium p-ISSN 0854-1418

[21] N. R. Council, "Building Community Disaster Resilience Through Private-Public Collaboration," *Building Community Disaster Resilience Through Private-Public Collaboration*, pp. 1–126, Oct. 2010, doi: 10.17226/13028.

- [22] L. Maas Cortés, M. Z. Rodriguez-Rivera, J. J. James, and J. F. Cordero, "The Caribbean Strong Summit: Building Resilience With Equity," *Disaster Med Public Health Prep*, vol. 14, no. 1, pp. 155–157, Feb. 2020, doi: 10.1017/DMP.2020.18.
- [23] S. W. Monie, M. Gustafsson, S. Önnered, and K. Guruvita, "Renewable and integrated energy system resilience A review and generic resilience index," *Renewable and Sustainable Energy Reviews*, vol. 215, p. 115554, Jun. 2025, doi: 10.1016/J.RSER.2025.115554.
- [24] John W. Creswell, Creswell. sage, 2009.
- [25] S. Vallance, "Early disaster recovery: a guide for communities," 2011, *School of Psychology, Massey University*. Accessed: Jul. 12, 2025. [Online]. Available: https://hdl.handle.net/10182/4232

e-ISSN 2503-426X